Extracellular volume fraction as a potential predictor to differentiate lung cancer from benign lung lesions with dual-layer detector spectral CT

医学 接收机工作特性 置信区间 肺癌 放射科 核医学 逻辑回归 纤维化 细胞外液 病理 内科学 细胞外 材料科学 冶金 生物 细胞生物学
作者
Xinxin Jiang,Qian-Yun Ma,Taohu Zhou,Feng Qian,Wen Yang,Xiuxiu Zhou,Wenjun Huang,Xiaoqing Lin,Jie Liu,Mengjie Zhang,Shi-yuan Liu,Xiaoyan Xin,Li Fan
出处
期刊:Quantitative imaging in medicine and surgery [AME Publishing Company]
卷期号:13 (12): 8121-8131
标识
DOI:10.21037/qims-23-736
摘要

Extracellular volume (ECV) fraction has been used in cardiovascular diseases, pancreatic fibrosis, and hepatic fibrosis. The diagnostic value of ECV for focal lung lesions remains to be explored. The aim of this study was to evaluate the feasibility of ECV derived from a dual-layer detector computed tomography (DLCT) to differentiate lung cancer (LC) from benign lung lesions (BLLs).Retrospectively, 128 consecutive patients with pathologically confirmed LC (n=86) or BLLs (n=42) were included. Conventional computed tomography (CT) characteristics and spectral CT parameters were assessed. All patients' hematocrits were measured to correct contrast volume distributions in blood while calculating ECV. After performing logistic regression analysis, a conventional CT-based model (Model A), DLCT-based model (Model B), combined diagnostic models (Model C), and an ECV-based model (Model D) were developed. The diagnostic effectiveness of each model was examined using the receiver operating characteristic (ROC) curve and their corresponding 95% confidence intervals (CIs). The area under the curve (AUC) of each model was compared using the DeLong test.Certain conventional CT features (such as lesion size, lobulation, spiculation, pleural indentation, and enlarged lymph nodes) differed significantly between the LC and BLL groups (all P<0.05). Statistical differences were found in the following DLCT parameters (all P<0.05): effective atomic number (Zeff) (non-enhancement), electron density (ED) (non-enhancement), ECV, iodine concentration (IC), and normalized iodine concentration (NIC). Models A, B, C, and D had AUCs of 0.801 [95% confidence interval (CI): 0.721-0.866], 0.805 (95% CI: 0.726-0.870), 0.925 (95% CI: 0.865-0.964), and 0.754 (95% CI: 0.671-0.826), respectively. The AUC of Model D (ECV) showed no significant difference from that of Models A and B (DeLong test, P>0.05).The ECV derived from DLCT may be a potential new method to differentiate LC from BLLs, broadening the scope of ECV in clinical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助yy采纳,获得10
1秒前
affff完成签到 ,获得积分10
11秒前
wm完成签到,获得积分10
13秒前
ytrewq完成签到 ,获得积分10
14秒前
Blaseaka完成签到 ,获得积分10
15秒前
奶油泡fu完成签到 ,获得积分10
16秒前
gyokaki完成签到 ,获得积分10
17秒前
花花2024完成签到 ,获得积分10
19秒前
务实完成签到 ,获得积分10
21秒前
严念桃完成签到,获得积分10
22秒前
hwl26完成签到,获得积分10
27秒前
28秒前
yuuu完成签到 ,获得积分10
28秒前
小芳芳完成签到 ,获得积分10
36秒前
Master完成签到 ,获得积分0
37秒前
小九九完成签到,获得积分10
38秒前
40秒前
阿铭完成签到 ,获得积分10
41秒前
羊羊羊完成签到 ,获得积分10
43秒前
001完成签到 ,获得积分10
45秒前
Cyber_relic完成签到,获得积分10
45秒前
49秒前
方方完成签到 ,获得积分10
51秒前
yy发布了新的文献求助10
55秒前
59秒前
阿克66完成签到,获得积分10
59秒前
maxthon完成签到,获得积分10
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
任性的白玉完成签到 ,获得积分10
1分钟前
1分钟前
晨珂完成签到,获得积分10
1分钟前
呆萌的小海豚完成签到,获得积分10
1分钟前
1分钟前
zhangyx完成签到 ,获得积分0
1分钟前
松柏完成签到 ,获得积分10
1分钟前
踏实谷蓝完成签到 ,获得积分10
1分钟前
闪闪火车完成签到 ,获得积分10
1分钟前
薄荷味完成签到 ,获得积分10
1分钟前
JamesPei应助林二车娜姆采纳,获得30
1分钟前
1分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798555
求助须知:如何正确求助?哪些是违规求助? 3344104
关于积分的说明 10318518
捐赠科研通 3060679
什么是DOI,文献DOI怎么找? 1679753
邀请新用户注册赠送积分活动 806769
科研通“疑难数据库(出版商)”最低求助积分说明 763353