强化学习
计算机科学
运动(物理)
任务(项目管理)
人工智能
感知
编码(社会科学)
连贯性(哲学赌博策略)
神经编码
人工神经网络
运动知觉
代表(政治)
编码(内存)
人口
钢筋
机器学习
神经科学
心理学
物理
数学
工程类
社会学
人口学
统计
政治
法学
系统工程
社会心理学
量子力学
政治学
作者
Dolton Fernandes,Pramod Kaushik,Raju S. Bapi
标识
DOI:10.1109/ijcnn54540.2023.10191751
摘要
Deep Reinforcement learning is beginning to be useful for studying neural representations in the brain because of its ability to combine decision-making and representation. Here, we use it to study a dot motion perceptual decision-making task in a high-dimensional setting where the inputs are akin to those used in psychological experiments. This end-to-end model gives a unique insight into how these networks solve the task providing a background on how the brain could solve this task. We find that the network can show properties similar to the middle temporal visual area (MT) in the brain, which code for direction and motion strength. We find the emergence of direction selectivity purely through reward-based training and graded firing coding motion strength and make a testable prediction that the MT population would also have coherence-selective neurons.
科研通智能强力驱动
Strongly Powered by AbleSci AI