Multi-sensor open-set cross-domain intelligent diagnostics for rotating machinery under variable operating conditions

判别式 计算机科学 故障检测与隔离 人工智能 特征提取 断层(地质) 数据挖掘 传感器融合 工程类 模式识别(心理学) 机器学习 执行机构 地质学 地震学
作者
Yongchao Zhang,Jinchen Ji,Zhaohui Ren,Qing Ni,Bangchun Wen
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:191: 110172-110172 被引量:24
标识
DOI:10.1016/j.ymssp.2023.110172
摘要

Domain adaptation techniques have the proven ability to deal with fault diagnosis issues under variable operating conditions. They can achieve a superb diagnostic performance in single-sensor monitoring scenarios where the training and test data share the same label space. However, in practical engineering, fault modes are usually mixed with each other and new failure modes may appear during operation, which poses a challenge to the effectiveness of existing cross-domain fault diagnosis methods. Furthermore, with the increasing complexity of modern industrial systems, multi-sensor collaborative monitoring has been increasingly deployed for comprehensive measurement and detection of the complicated system. Unfortunately, there is less attention paid to multi-sensor cross-domain diagnosis in the current literature. To bridge this research gap, this paper aims to develop a novel multi-sensor open-set cross-domain fault diagnosis method. First, a convolutional neural network-based single-sensor feature extraction module and a Transformer-based multi-sensor feature fusion module are constructed for discriminative feature extraction and fusion. Second, a weighted adversarial learning scheme is built to conduct domain-invariant learning of the shared fault modes between the source and target domains. Then, a threshold-based supervised contrastive loss is defined to realize instance-level domain alignment, together with an entropy max–min loss to identify unknown class samples. The effectiveness and practicability of the proposed method are validated by a series of experiments conducted on two different types of gearboxes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助JJJ采纳,获得10
1秒前
1秒前
3秒前
Eternity完成签到,获得积分10
5秒前
6秒前
共享精神应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
请问发布了新的文献求助10
8秒前
zyy6657完成签到,获得积分10
8秒前
会魔法的老人完成签到,获得积分10
8秒前
10秒前
CYY发布了新的文献求助10
11秒前
大胆易巧完成签到 ,获得积分10
13秒前
清秀的月亮完成签到,获得积分10
14秒前
2019kyxb发布了新的文献求助10
15秒前
叶雨思空完成签到 ,获得积分10
16秒前
17秒前
17秒前
君君发布了新的文献求助30
22秒前
今后应助Yi采纳,获得10
22秒前
Lm发布了新的文献求助10
22秒前
852应助2019kyxb采纳,获得10
25秒前
30秒前
执着的孱完成签到 ,获得积分10
31秒前
32秒前
白开水发布了新的文献求助10
33秒前
安白完成签到,获得积分10
35秒前
37秒前
Lm完成签到,获得积分10
38秒前
43秒前
Yi发布了新的文献求助10
44秒前
44秒前
请问发布了新的文献求助30
44秒前
白开水完成签到,获得积分10
46秒前
应稀发布了新的文献求助10
48秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323538
关于积分的说明 10214834
捐赠科研通 3038709
什么是DOI,文献DOI怎么找? 1667628
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315