Interpretable local flow attention for multi-step traffic flow prediction

计算机科学 卷积神经网络 特征(语言学) 流量(数学) 人工智能 流量(计算机网络) 维数(图论) 流量网络 机器学习 频道(广播) 机制(生物学) 数学优化 认识论 纯数学 哲学 几何学 语言学 计算机安全 数学 计算机网络
作者
Xu Huang,Bowen Zhang,Shanshan Feng,Yunming Ye,Xutao Li
出处
期刊:Neural Networks [Elsevier BV]
卷期号:161: 25-38 被引量:19
标识
DOI:10.1016/j.neunet.2023.01.023
摘要

Traffic flow prediction (TFP) has attracted increasing attention with the development of smart city. In the past few years, neural network-based methods have shown impressive performance for TFP. However, most of previous studies fail to explicitly and effectively model the relationship between inflows and outflows. Consequently, these methods are usually uninterpretable and inaccurate. In this paper, we propose an interpretable local flow attention (LFA) mechanism for TFP, which yields three advantages. (1) LFA is flow-aware. Different from existing works, which blend inflows and outflows in the channel dimension, we explicitly exploit the correlations between flows with a novel attention mechanism. (2) LFA is interpretable. It is formulated by the truisms of traffic flow, and the learned attention weights can well explain the flow correlations. (3) LFA is efficient. Instead of using global spatial attention as in previous studies, LFA leverages the local mode. The attention query is only performed on the local related regions. This not only reduces computational cost but also avoids false attention. Based on LFA, we further develop a novel spatiotemporal cell, named LFA-ConvLSTM (LFA-based convolutional long short-term memory), to capture the complex dynamics in traffic data. Specifically, LFA-ConvLSTM consists of three parts. (1) A ConvLSTM module is utilized to learn flow-specific features. (2) An LFA module accounts for modeling the correlations between flows. (3) A feature aggregation module fuses the above two to obtain a comprehensive feature. Extensive experiments on two real-world datasets show that our method achieves a better prediction performance. We improve the RMSE metric by 3.2%–4.6%, and the MAPE metric by 6.2%–6.7%. Our LFA-ConvLSTM is also almost 32% faster than global self-attention ConvLSTM in terms of prediction time. Furthermore, we also present some visual results to analyze the learned flow correlations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tao完成签到 ,获得积分10
1秒前
LEOhard完成签到,获得积分10
2秒前
菜头完成签到,获得积分10
3秒前
今天也要好好学习完成签到,获得积分10
4秒前
孤鸿寄语发布了新的文献求助10
5秒前
来到火山口的大企鹅完成签到,获得积分10
5秒前
曾经的慕灵完成签到,获得积分10
6秒前
lighting完成签到 ,获得积分10
8秒前
尊敬帅哥完成签到,获得积分10
8秒前
sinlar完成签到,获得积分10
8秒前
Novice6354完成签到 ,获得积分10
8秒前
ai白哥完成签到,获得积分10
8秒前
你才是小哭包完成签到 ,获得积分10
10秒前
水穷云起完成签到,获得积分10
12秒前
13秒前
浮流少年完成签到,获得积分10
13秒前
Gyy完成签到,获得积分10
15秒前
畅快的念烟完成签到,获得积分10
15秒前
縤雨完成签到 ,获得积分10
17秒前
社恐科研狗完成签到,获得积分10
17秒前
ccc完成签到 ,获得积分10
20秒前
yellow完成签到 ,获得积分10
21秒前
踏实采波完成签到,获得积分10
22秒前
科研通AI5应助SRN采纳,获得10
22秒前
asdasd完成签到,获得积分10
23秒前
像猫的狗完成签到 ,获得积分10
23秒前
23秒前
王不雅完成签到,获得积分10
23秒前
Lyw完成签到 ,获得积分10
24秒前
倪小呆完成签到 ,获得积分10
25秒前
wang完成签到,获得积分10
26秒前
www发布了新的文献求助10
27秒前
知犯何逆完成签到 ,获得积分10
27秒前
xiaohongmao发布了新的文献求助10
27秒前
28秒前
斯奈克完成签到,获得积分10
28秒前
爱学习的婷完成签到 ,获得积分10
29秒前
ttttsy完成签到 ,获得积分10
31秒前
夜白完成签到,获得积分0
33秒前
Why发布了新的文献求助10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795626
求助须知:如何正确求助?哪些是违规求助? 3340699
关于积分的说明 10301167
捐赠科研通 3057247
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805478
科研通“疑难数据库(出版商)”最低求助积分说明 762626