Faster Metallic Surface Defect Detection Using Deep Learning with燙hannel燬huffling

深度学习 人工智能 曲面(拓扑) 材料科学 计算机科学 数学 几何学
作者
Siddiqui Muhammad Yasir,Hyunsik Ahn
出处
期刊:Computers, materials & continua 卷期号:75 (1): 1847-1861 被引量:3
标识
DOI:10.32604/cmc.2023.035698
摘要

Deep learning has been constantly improving in recent years and a significant number of researchers have devoted themselves to the research of defect detection algorithms. Detection and recognition of small and complex targets is still a problem that needs to be solved. The authors of this research would like to present an improved defect detection model for detecting small and complex defect targets in steel surfaces. During steel strip production mechanical forces and environmental factors cause surface defects of the steel strip. Therefore the detection of such defects is key to the production of high-quality products. Moreover surface defects of the steel strip cause great economic losses to the high-tech industry. So far few studies have explored methods of identifying the defects and most of the currently available algorithms are not sufficiently effective. Therefore this study presents an improved real-time metallic surface defect detection model based on You Only Look Once (YOLOv5) specially designed for small networks. For the smaller features of the target the conventional part is replaced with a depth-wise convolution and channel shuffle mechanism. Then assigning weights to Feature Pyramid Networks (FPN) output features and fusing them increases feature propagation and the networks characterization ability. The experimental results reveal that the improved proposed model outperforms other comparable models in terms of accuracy and detection time. The precision of the proposed model achieved by @mAP is 77.5% on the Northeastern University Dataset NEU-DET and 70.18% on the GC10-DET datasets
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pluto应助mm采纳,获得10
1秒前
1秒前
yyhgyg完成签到,获得积分10
1秒前
1秒前
卷豆子完成签到,获得积分20
2秒前
阳佟水蓉完成签到,获得积分10
3秒前
ZengFly发布了新的文献求助10
3秒前
笑点低南晴完成签到,获得积分10
4秒前
4秒前
007完成签到,获得积分10
5秒前
5秒前
暖心人士发布了新的文献求助10
5秒前
yyhgyg发布了新的文献求助10
5秒前
852应助轻松的皮皮虾采纳,获得30
6秒前
6秒前
PPP发布了新的文献求助10
7秒前
猪猪完成签到,获得积分20
8秒前
8秒前
9秒前
Myownway完成签到,获得积分10
9秒前
起起完成签到 ,获得积分10
9秒前
爱睡午觉发布了新的文献求助10
10秒前
10秒前
10秒前
康康完成签到,获得积分10
11秒前
11秒前
Peter发布了新的文献求助10
11秒前
文静的芮完成签到,获得积分10
12秒前
失眠静珊完成签到,获得积分10
12秒前
JiangY完成签到,获得积分10
13秒前
梧桐完成签到 ,获得积分10
14秒前
饱满笑寒发布了新的文献求助10
14秒前
朱佳宁发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
丁莞发布了新的文献求助10
15秒前
15秒前
16秒前
江浔卿发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5480532
求助须知:如何正确求助?哪些是违规求助? 4581748
关于积分的说明 14381950
捐赠科研通 4510343
什么是DOI,文献DOI怎么找? 2471734
邀请新用户注册赠送积分活动 1458172
关于科研通互助平台的介绍 1431848