亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Biological age models based on a healthy Han Chinese population

人口 主成分分析 线性回归 医学 统计 数学 环境卫生
作者
Zhe Li,Weiguang Zhang,Yuting Duan,Yue Niu,Yan He,Yizhi Chen,Xiaomin Liu,Zheyi Dong,Ying Zheng,Xizhao Chen,Zhe Feng,Yong Wang,Delong Zhao,Xuefeng Sun,Guangyan Cai,Hongwei� Jiang,Xiangmei Chen
出处
期刊:Archives of Gerontology and Geriatrics [Elsevier]
卷期号:107: 104905-104905 被引量:12
标识
DOI:10.1016/j.archger.2022.104905
摘要

Biological age (BA) may reflect the actual aging state in humans better than chronological age (CA). The study aimed to construct BA models suitable for the Chinese Han population by selecting appropriate aging markers and evaluation methods. A total of 1207 individuals (21∼91 years) from the Han Chinese population in Beijing were examined for essential organ functions, and 156 cardiovascular, pulmonary function, and atherosclerotic indices and clinical and genetic factors were used as candidate markers of aging. BA models were constructed using multiple linear regression (MLR), principal component analysis (PCA), and the Klemera and Doubal method (KDM). Models were internally and externally validated using cross-validation and disease populations. Nine aging markers were selected. Two MLR, three PCA, and three KDM models were successfully constructed. External validation showed that the difference between CA and BA was most significant in the PCA3 and KDM2 models, while there was no significant difference in the MLR1 and MLR2 models; the fitted lines for BA in the disease population were higher than those in the healthy population in the MLR1, MLR2, KDM1, and KDM2 models, while the other models showed the opposite. Based on a healthy population in Beijing, nine markers representing multiple organ/system functions were screened from the candidate markers, eight methods were successfully used to construct BA models, and the KDM2 model was found to potentially be more appropriate for assessing BA in the Chinese Han population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
susu发布了新的文献求助30
3秒前
纯真如松发布了新的文献求助10
8秒前
10秒前
乐乐应助炙热的念柏采纳,获得10
11秒前
18秒前
25秒前
28秒前
杜阿妹完成签到,获得积分10
29秒前
杜阿妹发布了新的文献求助10
31秒前
追寻友桃发布了新的文献求助10
32秒前
Criminology34应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
36秒前
李爱国应助科研通管家采纳,获得10
36秒前
38秒前
劉浏琉应助纯真如松采纳,获得10
40秒前
领导范儿应助追寻友桃采纳,获得10
41秒前
shinn发布了新的文献求助10
42秒前
44秒前
脑洞疼应助文化沙漠采纳,获得10
44秒前
随机昵称完成签到,获得积分10
48秒前
随机昵称发布了新的文献求助10
51秒前
55秒前
55秒前
我是老大应助shinn采纳,获得10
1分钟前
1分钟前
1分钟前
阔达忆秋完成签到 ,获得积分10
1分钟前
gjz发布了新的文献求助20
1分钟前
CodeCraft应助标致的元柏采纳,获得10
1分钟前
NexusExplorer应助耕云钓月采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
ll完成签到 ,获得积分10
1分钟前
stupidZ完成签到,获得积分10
1分钟前
忆修发布了新的文献求助30
1分钟前
研友_LOrqv8发布了新的文献求助30
1分钟前
shinn发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772479
求助须知:如何正确求助?哪些是违规求助? 5598976
关于积分的说明 15429712
捐赠科研通 4905414
什么是DOI,文献DOI怎么找? 2639398
邀请新用户注册赠送积分活动 1587319
关于科研通互助平台的介绍 1542182