The Value of Myocardial Fibrosis Parameters Derived from Cardiac Magnetic Resonance Imaging in Risk Stratification for Patients with Hypertrophic Cardiomyopathy

医学 肥厚性心肌病 内科学 心脏病学 磁共振成像 队列 心脏磁共振成像 心源性猝死 回顾性队列研究 逻辑回归 接收机工作特性 心肌病 危险分层 弗雷明翰风险评分 心脏磁共振 放射科 心力衰竭 疾病
作者
Taihui Yu,Zhaoxi Cai,Zehong Yang,Wenhao Lin,Yun Su,Jixin Li,Shuanglun Xie,Jun Shen
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (9): 1962-1978 被引量:12
标识
DOI:10.1016/j.acra.2022.12.026
摘要

Rationale and Objectives

The aim of the study was to determine whether myocardial fibrosis parameters of cardiac magnetic resonance imaging (MRI) has added value in the risk stratification of hypertrophic cardiomyopathy (HCM) patients.

Materials and Methods

In this retrospective study, 108 patients with HCM (mean age ± standard deviation, 55.5 ± 13.4 years) were included from January 2019 to April 2022, and were followed up for 2 years to record sudden cardiac death (SCD) adverse events. All HCM patients underwent cardiac MRI and were divided into a training cohort (n = 81; mean age, 56.1 ± 13.0 years) and a validation cohort (n = 27; mean age, 57.8 ± 13.9 years). According to the presence of SCD risk factors defined by the 2020 AHA/ACC guidelines, HCM patients were classified into low-risk and high-risk groups. Cardiac MRI features, including late gadolinium enhancement (LGE), T1 mapping, and extracellular volume fraction (ECV), were assessed and compared between the two groups. Logistic regression analysis was used to select the optimal predictors of SCD from cardiac MRI features and HCM Risk-SCD score to construct prediction models. Receiver operating curve (ROC) analysis was used to assess the predictive performance of the constructed prediction model. Cox regression analysis was also used to determine the optimal predictors of SCD adverse events.

Results

Multivariate logistic analysis showed that the global ECV was the single myocardial fibrosis parameter predictive of the risk of SCD (p < 0.001). The areas under the ROC curves (AUC) of global ECV were higher than those of LGE, global native T1, global postcontrast T1, and HCM Risk-SCD (AUC = 0.85 vs. 0.74, 0.77, 0.63, 0.78). An integrative risk stratification model combining global ECV (odds ratio, 1.36 [95% CI: 1.16–1.60]; p < 0.001) and HCM Risk-SCD score (odds ratio, 1.63 [95% CI: 1.08–2.47]; p < 0.001) achieved an AUC of 0.89 (95% CI: 0.81-0.96) in the training cohort, which was significantly higher than that of HCM Risk-SCD score alone (p = 0.03). The AUC of the integrative model was 0.93 (95% CI: 0.84–1.00) in the validation cohort. Multivariate Cox regression analysis also showed that the global ECV was an independent predictor of SCD adverse events (hazard ratio, 1.27 [95% CI: 1.10–1.47]).

Conclusion

The ECV derived from cardiac MRI is comparable to the HCM Risk-SCD scale in predicting the SCD risk stratification in patients with HCM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MMM发布了新的文献求助30
刚刚
may完成签到,获得积分10
1秒前
小橘子发布了新的文献求助10
1秒前
松林完成签到,获得积分20
1秒前
lele发布了新的文献求助10
2秒前
银雀w发布了新的文献求助10
4秒前
zzz发布了新的文献求助10
4秒前
5秒前
luo完成签到,获得积分10
6秒前
7秒前
7秒前
陶治完成签到,获得积分10
8秒前
8秒前
8秒前
简单的笑容完成签到,获得积分10
9秒前
银雀w完成签到,获得积分10
10秒前
李希完成签到,获得积分10
10秒前
bigpluto发布了新的文献求助10
10秒前
xxr发布了新的文献求助10
10秒前
11秒前
12秒前
LuckyMM完成签到 ,获得积分10
12秒前
威武涵蕾发布了新的文献求助10
13秒前
misaka11012发布了新的文献求助10
13秒前
谨慎寄松完成签到,获得积分20
14秒前
SciGPT应助薛定谔的猫采纳,获得10
15秒前
Ava应助WXG采纳,获得10
16秒前
16秒前
17秒前
科研通AI2S应助Wjk采纳,获得30
17秒前
weigaozhao完成签到 ,获得积分10
17秒前
今后应助清爽慕山采纳,获得10
18秒前
18秒前
顾矜应助chillax采纳,获得10
18秒前
18秒前
在水一方应助scanker1981采纳,获得30
19秒前
梦未凉发布了新的文献求助10
20秒前
汉堡包应助逆麟采纳,获得10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307051
求助须知:如何正确求助?哪些是违规求助? 4452740
关于积分的说明 13855150
捐赠科研通 4340324
什么是DOI,文献DOI怎么找? 2383115
邀请新用户注册赠送积分活动 1377917
关于科研通互助平台的介绍 1345800