硝化作用
矿化(土壤科学)
安地索
动物科学
化学
水分
含水量
氮气
氮气循环
尿素
土壤水分
农学
环境化学
土壤科学
环境科学
生物
生物化学
地质学
有机化学
岩土工程
作者
Magdalena A. Ramírez-Sandoval,Dante Pinochet,M. Jordana Rivero,L. M. Cardenas
出处
期刊:Agronomy
[Multidisciplinary Digital Publishing Institute]
日期:2022-12-21
卷期号:13 (1): 10-10
被引量:5
标识
DOI:10.3390/agronomy13010010
摘要
Urea present in cattle urine contributes large amounts of nitrogen (N) to grazed pastures, which can be the equivalent to approximately 1000 kg N ha−1. However, there are no studies in volcanic soils of southern Chile on the effect of different concentrations of urinary N deposited in the soil, nor of the effect different wetting and drying conditions mimicking the variation in weather conditions on the nitrification process from urea to NH4+ and total oxidized nitrogen (TON) over time. In addition, the inhibition of nitrification driven by the accumulation of NH3 at high rates of N applied to Andisol has not been evaluated. Fresh cattle urine was applied at three different rates of N equivalent to 247 kg N ha−1 (Low N), 461 kg N ha−1 (Medium N), and 921 kg N ha−1 (High N), as well as deionized water as a control. Further, three moisture conditions were imposed: constant moisture (CM), drying–rewetting (DRW) cycles at 7-day intervals, and soil drying (SD). Destructive soil core samples were evaluated for top and bottom halves individually every 7 days over a 36-day period to measure changes on inorganic N and pH. There were no interaction effects for N rates and soil moisture. The main effect of the different rates of N on mineralization was significant throughout the incubation period, while the effect of the different moisture conditions was variable over time. High N was associated with elevated NH3 concentrations and could explain why total N mineralization was partially inhibited. These results suggest that the presence of different nitrifying microorganisms in soil under different chemical and physical conditions determines nitrification, and thus, the oxidation of ammonia should be studied in more detail as the first step of nitrification, specifically in volcanic soils.
科研通智能强力驱动
Strongly Powered by AbleSci AI