已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Semi-Supervised Medical Image Segmentation Using Adversarial Consistency Learning and Dynamic Convolution Network

计算机科学 人工智能 分割 过度拟合 一致性(知识库) 模式识别(心理学) 卷积(计算机科学) 图像分割 像素 特征(语言学) 机器学习 人工神经网络 语言学 哲学
作者
Tao Lei,Dong Zhang,Xiaogang Du,Xuan Wang,Yong Wan,Asoke K. Nandi
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (5): 1265-1277 被引量:71
标识
DOI:10.1109/tmi.2022.3225687
摘要

Popular semi-supervised medical image segmentation networks often suffer from error supervision from unlabeled data since they usually use consistency learning under different data perturbations to regularize model training. These networks ignore the relationship between labeled and unlabeled data, and only compute single pixel-level consistency leading to uncertain prediction results. Besides, these networks often require a large number of parameters since their backbone networks are designed depending on supervised image segmentation tasks. Moreover, these networks often face a high over-fitting risk since a small number of training samples are popular for semi-supervised image segmentation. To address the above problems, in this paper, we propose a novel adversarial self-ensembling network using dynamic convolution (ASE-Net) for semi-supervised medical image segmentation. First, we use an adversarial consistency training strategy (ACTS) that employs two discriminators based on consistency learning to obtain prior relationships between labeled and unlabeled data. The ACTS can simultaneously compute pixel-level and image-level consistency of unlabeled data under different data perturbations to improve the prediction quality of labels. Second, we design a dynamic convolution-based bidirectional attention component (DyBAC) that can be embedded in any segmentation network, aiming at adaptively adjusting the weights of ASE-Net based on the structural information of input samples. This component effectively improves the feature representation ability of ASE-Net and reduces the overfitting risk of the network. The proposed ASE-Net has been extensively tested on three publicly available datasets, and experiments indicate that ASE-Net is superior to state-of-the-art networks, and reduces computational costs and memory overhead. The code is available at: https://github.com/SUST-reynole/ASE-Nethttps://github.com/SUST-reynole/ASE-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坦率的冰淇淋关注了科研通微信公众号
1秒前
lxl98发布了新的文献求助10
1秒前
gb发布了新的文献求助10
1秒前
缥缈鸭子完成签到 ,获得积分10
1秒前
2秒前
库里强发布了新的文献求助10
3秒前
4秒前
fah完成签到,获得积分10
5秒前
小二郎应助guojin采纳,获得10
5秒前
6秒前
张PC发布了新的文献求助30
7秒前
陈寯完成签到,获得积分10
8秒前
放青松发布了新的文献求助10
9秒前
11秒前
Orange应助Yuanyuan采纳,获得10
14秒前
积极鱼完成签到 ,获得积分10
15秒前
cdercder应助库里强采纳,获得10
16秒前
16秒前
在水一方应助yongyou采纳,获得10
16秒前
科研通AI5应助gb采纳,获得10
17秒前
19秒前
大力出奇迹完成签到,获得积分10
21秒前
丘比特应助peace采纳,获得10
24秒前
小小发布了新的文献求助10
25秒前
neilphilosci完成签到 ,获得积分10
25秒前
无花果应助好奇宝宝采纳,获得10
27秒前
27秒前
脑洞疼应助123采纳,获得10
29秒前
张怡博完成签到 ,获得积分10
30秒前
yii完成签到,获得积分10
30秒前
烟花应助和谐的柠檬采纳,获得10
31秒前
32秒前
帅气东蒽发布了新的文献求助10
32秒前
34秒前
35秒前
37秒前
山上桃花酿完成签到 ,获得积分10
37秒前
斯文败类应助小帅采纳,获得10
37秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840547
求助须知:如何正确求助?哪些是违规求助? 3382618
关于积分的说明 10525193
捐赠科研通 3102191
什么是DOI,文献DOI怎么找? 1708723
邀请新用户注册赠送积分活动 822646
科研通“疑难数据库(出版商)”最低求助积分说明 773450