已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of individual trigeminal pain sensitivity from gray matter structure within the sensorimotor network

概化理论 磁共振成像 医学 听力学 心理学 发展心理学 放射科
作者
David M. Niddam,Yu‐Te Wu,Li‐Ling Hope Pan,Yung‐Lin Chen,Shuu‐Jiun Wang
出处
期刊:Headache [Wiley]
卷期号:63 (1): 146-155 被引量:2
标识
DOI:10.1111/head.14429
摘要

To determine whether multivariate pattern regression analysis based on gray matter (GM) images constrained to the sensorimotor network could accurately predict trigeminal heat pain sensitivity in healthy individuals.Prediction of individual pain sensitivity is of clinical relevance as high pain sensitivity is associated with increased risks of postoperative pain, pain chronification, and a poor treatment response. However, as pain is a subjective experience accurate identification of such individuals can be difficult. GM structure of sensorimotor regions have been shown to vary with pain sensitivity. It is unclear whether GM structure within these regions can be used to predict pain sensitivity.In this cross-sectional study, structural magnetic resonance images and pain thresholds in response to contact heat stimulation of the left supraorbital area were obtained from 79 healthy participants. Voxel-based morphometry was used to extract segmented and normalized GM images. These were then constrained to a mask encompassing the functionally defined resting-state sensorimotor network. The masked images and pain thresholds entered a multivariate relevance vector regression analysis for quantitative prediction of the individual pain thresholds. The correspondence between predicted and actual pain thresholds was indexed by the Pearson correlation coefficient (r) and the mean squared error (MSE). The generalizability of the model was assessed by 10-fold and 5-fold cross-validation. Non-parametric permutation tests were used to estimate significance levels.Trigeminal heat pain sensitivity could be predicted from GM structure within the sensorimotor network with significant accuracy (10-fold: r = 0.53, p < 0.001, MSE = 10.32, p = 0.001; 5-fold: r = 0.46, p = 0.001, MSE = 10.54, p < 0.001). The resulting multivariate weight maps revealed that accurate prediction relied on multiple widespread regions within the sensorimotor network.A multivariate pattern of GM structure within the sensorimotor network could be used to make accurate predictions about trigeminal heat pain sensitivity at the individual level in healthy participants. Widespread regions within the sensorimotor network contributed to the predictive model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凤里完成签到 ,获得积分10
2秒前
Joey完成签到,获得积分20
4秒前
Limerencia完成签到,获得积分10
4秒前
吴谷杂粮完成签到 ,获得积分10
5秒前
乳酸菌小面包完成签到,获得积分10
6秒前
Kevin完成签到,获得积分10
8秒前
rrjl完成签到,获得积分10
10秒前
不爱冒泡的气泡水完成签到 ,获得积分10
11秒前
湛刘佳完成签到 ,获得积分10
14秒前
华仔应助纯真的无声采纳,获得10
15秒前
无与伦比完成签到 ,获得积分10
15秒前
鲍文启完成签到 ,获得积分10
16秒前
Rebeccaiscute完成签到 ,获得积分10
16秒前
千倾完成签到 ,获得积分10
18秒前
洁净的向南完成签到 ,获得积分10
18秒前
代代完成签到 ,获得积分10
19秒前
22秒前
22秒前
23秒前
mfy完成签到,获得积分10
25秒前
illuminate完成签到,获得积分10
26秒前
波博士关注了科研通微信公众号
27秒前
zho应助星夜采纳,获得10
27秒前
mfy发布了新的文献求助10
27秒前
hahahan完成签到 ,获得积分10
27秒前
jessie完成签到 ,获得积分10
29秒前
33秒前
yys10l完成签到,获得积分10
34秒前
严明完成签到,获得积分10
35秒前
严明完成签到,获得积分10
35秒前
溯溯完成签到 ,获得积分10
35秒前
程风破浪完成签到,获得积分10
37秒前
义气幼珊完成签到 ,获得积分10
38秒前
38秒前
心灵美语兰完成签到 ,获得积分10
39秒前
41秒前
儒雅一凤完成签到 ,获得积分10
41秒前
程风破浪发布了新的文献求助10
42秒前
SciGPT应助花花采纳,获得10
43秒前
1111完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777535
求助须知:如何正确求助?哪些是违规求助? 3322905
关于积分的说明 10212336
捐赠科研通 3038238
什么是DOI,文献DOI怎么找? 1667247
邀请新用户注册赠送积分活动 798068
科研通“疑难数据库(出版商)”最低求助积分说明 758201