Multi-Stage Geo-Distributed Data Aggregation With Coordinated Computation and Communication in Edge Compute First Networking

计算机科学 数据聚合器 分布式计算 带宽(计算) 计算 数据传输 供应 GSM演进的增强数据速率 方案(数学) 分布式算法 传播 边缘设备 计算机网络 无线传感器网络 云计算 算法 电信 操作系统 数学分析 数学
作者
Zhen Liu,Xianming Yuan,Yuan Jia,Jiawei Zhang,Zhiqun Gu,Long Zhang
出处
期刊:Journal of Lightwave Technology [Institute of Electrical and Electronics Engineers]
卷期号:41 (8): 2289-2300 被引量:6
标识
DOI:10.1109/jlt.2022.3232840
摘要

With the explosion of geo-distributed data, the huge treasures hidden in them are waiting to be explored to obtain valuable insights. This results in the need for an effective geo- distributed data analysis method. The traditional approach to geo-distributed data analytics is to gather all the required data into a single edge datacenter (edge DC) through one transmission and aggregation (centralized data aggregation). However, as the volume of data grows exponentially, the centralized data aggregation scheme becomes inefficient or infeasible due to the limitations of the computing and network resources. In this paper, we propose the geo-distributed data aggregation scheme in edge compute first networking (CFN) with joint consideration of computation and communication resources. The proposed scheme optimizes two objectives: the first is to minimize the job completion time (JCT) by selecting cluster centers, dividing clusters and provisioning lightpaths; the second objective is to reduce bandwidth consumption by reallocating routing and frequency slots based on JCT. To achieve the two objectives, we first formulate the optimization problem of multi-stage geo- distributed data aggregation as a linear programming (LP) model. To tackle the computational complexity issue of the LP model, a multi-stage geo-distributed data aggregation algorithm jointly with computation and communication resources (MGDD-CC) is proposed. Simulation results show that the proposed scheme can reduce JCT, alleviate the competition for bandwidth resources and is more suitable for scenarios with better data aggregation effects and larger quantities of geo-distributed data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助1111采纳,获得10
刚刚
刚刚
进击的PhD应助王美丽采纳,获得20
刚刚
刚刚
1秒前
Andre发布了新的文献求助30
1秒前
星辰大海应助0Miles采纳,获得10
1秒前
灵魂医者完成签到,获得积分10
1秒前
sdpx完成签到 ,获得积分10
1秒前
科研通AI6应助cc采纳,获得10
1秒前
delia发布了新的文献求助10
1秒前
危机的娩发布了新的文献求助10
1秒前
二月why完成签到,获得积分10
2秒前
小蘑菇应助xuan采纳,获得10
2秒前
李健的粉丝团团长应助xuan采纳,获得10
2秒前
天天快乐应助xuan采纳,获得10
2秒前
2秒前
烟花应助xuan采纳,获得10
2秒前
慕青应助xuan采纳,获得10
2秒前
慕青应助xuan采纳,获得10
2秒前
2秒前
英姑应助xuan采纳,获得10
2秒前
JamesPei应助xuan采纳,获得10
2秒前
FashionBoy应助xuan采纳,获得10
2秒前
乐乐应助xuan采纳,获得10
2秒前
桐桐应助ly采纳,获得10
2秒前
lll完成签到,获得积分10
3秒前
所所应助ctttt采纳,获得10
3秒前
3秒前
无花果应助典雅的俊驰采纳,获得10
3秒前
有魅力姿完成签到,获得积分10
3秒前
shdheud发布了新的文献求助10
4秒前
zypazyp完成签到,获得积分10
4秒前
要减肥南霜完成签到,获得积分10
4秒前
阿司匹林发布了新的文献求助10
4秒前
小叶子发布了新的文献求助10
4秒前
4秒前
踏实语海发布了新的文献求助10
4秒前
4秒前
shouz发布了新的文献求助30
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647671
求助须知:如何正确求助?哪些是违规求助? 4774049
关于积分的说明 15040794
捐赠科研通 4806561
什么是DOI,文献DOI怎么找? 2570314
邀请新用户注册赠送积分活动 1527131
关于科研通互助平台的介绍 1486211