Passenger-Centric Slot Allocation at Schedule-Coordinated Airports

地铁列车时刻表 运筹学 航空 调度(生产过程) 计算机科学 飞行计划 分析 整数规划 民用航空 运输工程 工程类 实时计算 运营管理 算法 操作系统 航空航天工程 数据科学
作者
Sebastian Birolini,Alexandre Jacquillat,Phillip Schmedeman,Nuno Antunes Ribeiro
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (1): 4-26 被引量:7
标识
DOI:10.1287/trsc.2022.1165
摘要

Schedule coordination is the primary form of demand management used at busy airports. At its core, slot allocation involves a highly complex combinatorial problem. In response, optimization models have been developed to minimize the displacement of flight schedules from airline requests, subject to physical and administrative constraints. Existing approaches, however, may not result in the best itineraries for passengers. This paper proposes an original passenger-centric approach to airport slot allocation to maximize available itineraries and minimize connecting times. Because of the uncertainty regarding passenger demand, the proposed approach combines predictive analytics to forecast passenger flows in flight networks from historical data and prescriptive analytics to optimize airport slot assignments in view of flight-centric and passenger-centric considerations. The problem is formulated as a mixed-integer nonconvex optimization model. To solve it, we propose an approximation scheme that alternates between flight-scheduling and passenger-accommodation modules and embed it into a large-scale neighborhood search algorithm. Using real-world data from the Singapore Changi and Lisbon Airports, we show that the proposed model and algorithm return solutions in acceptable computational times. Results suggest that slot-allocation outcomes can be made much more consistent with passenger flows at a relatively small cost in terms of flight displacement. Ultimately, this paper provides a new paradigm that can create more attractive flight schedules by bringing together airport-level considerations, airline-level considerations, and, for the first time, passenger-level considerations. Funding: Financial support from the Civil Aviation Authority of Singapore [Project on Airfield Management and Economics] is gratefully acknowledged. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1165 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkt发布了新的文献求助10
2秒前
2秒前
所所应助ZhenyuLiu采纳,获得10
3秒前
99ldt发布了新的文献求助10
3秒前
赤木发布了新的文献求助10
3秒前
Ricochet发布了新的文献求助10
3秒前
4秒前
wsf2023发布了新的文献求助30
5秒前
5秒前
彭于彦祖应助dy采纳,获得20
6秒前
wqc2060发布了新的文献求助10
7秒前
7秒前
Ricochet完成签到,获得积分10
8秒前
科研通AI5应助武勇采纳,获得30
9秒前
11秒前
sanjin发布了新的文献求助10
11秒前
99ldt完成签到,获得积分20
13秒前
数据线发布了新的文献求助10
14秒前
细心枫叶发布了新的文献求助10
15秒前
怕孤独的自行车完成签到,获得积分10
15秒前
默默白开水完成签到 ,获得积分10
16秒前
16秒前
可靠的青发布了新的文献求助10
17秒前
19秒前
沐晨浠完成签到,获得积分10
22秒前
东华帝君完成签到,获得积分10
22秒前
22秒前
彭于晏应助牧童采纳,获得10
23秒前
可靠的青完成签到,获得积分10
23秒前
景雪航发布了新的文献求助10
24秒前
24秒前
毛脸雷公嘴完成签到,获得积分10
27秒前
27秒前
hj发布了新的文献求助10
28秒前
Ava应助细心枫叶采纳,获得10
28秒前
29秒前
含糊的凤灵完成签到,获得积分10
30秒前
lune发布了新的文献求助10
30秒前
cuddly完成签到 ,获得积分10
32秒前
32秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377526
关于积分的说明 10498888
捐赠科研通 3097008
什么是DOI,文献DOI怎么找? 1705417
邀请新用户注册赠送积分活动 820558
科研通“疑难数据库(出版商)”最低求助积分说明 772123