Passenger-Centric Slot Allocation at Schedule-Coordinated Airports

地铁列车时刻表 运筹学 航空 调度(生产过程) 计算机科学 飞行计划 分析 整数规划 民用航空 运输工程 工程类 实时计算 运营管理 算法 操作系统 航空航天工程 数据科学
作者
Sebastian Birolini,Alexandre Jacquillat,Phillip Schmedeman,Nuno Antunes Ribeiro
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:57 (1): 4-26 被引量:7
标识
DOI:10.1287/trsc.2022.1165
摘要

Schedule coordination is the primary form of demand management used at busy airports. At its core, slot allocation involves a highly complex combinatorial problem. In response, optimization models have been developed to minimize the displacement of flight schedules from airline requests, subject to physical and administrative constraints. Existing approaches, however, may not result in the best itineraries for passengers. This paper proposes an original passenger-centric approach to airport slot allocation to maximize available itineraries and minimize connecting times. Because of the uncertainty regarding passenger demand, the proposed approach combines predictive analytics to forecast passenger flows in flight networks from historical data and prescriptive analytics to optimize airport slot assignments in view of flight-centric and passenger-centric considerations. The problem is formulated as a mixed-integer nonconvex optimization model. To solve it, we propose an approximation scheme that alternates between flight-scheduling and passenger-accommodation modules and embed it into a large-scale neighborhood search algorithm. Using real-world data from the Singapore Changi and Lisbon Airports, we show that the proposed model and algorithm return solutions in acceptable computational times. Results suggest that slot-allocation outcomes can be made much more consistent with passenger flows at a relatively small cost in terms of flight displacement. Ultimately, this paper provides a new paradigm that can create more attractive flight schedules by bringing together airport-level considerations, airline-level considerations, and, for the first time, passenger-level considerations. Funding: Financial support from the Civil Aviation Authority of Singapore [Project on Airfield Management and Economics] is gratefully acknowledged. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1165 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www应助一星如月采纳,获得10
1秒前
1秒前
1秒前
2秒前
3秒前
彳亍发布了新的文献求助10
3秒前
科研通AI5应助fry采纳,获得30
4秒前
4秒前
亓熙发布了新的文献求助10
6秒前
7秒前
8秒前
fmwang完成签到,获得积分10
9秒前
xxx发布了新的文献求助10
10秒前
11秒前
李爱国应助blank采纳,获得10
11秒前
Setix发布了新的文献求助10
12秒前
小点点发布了新的文献求助10
13秒前
田様应助木光采纳,获得10
13秒前
14秒前
wonderwall完成签到,获得积分10
15秒前
十you八九发布了新的文献求助10
16秒前
爱听歌的问柳完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
科研通AI6应助hyyyh采纳,获得30
19秒前
元问晴完成签到,获得积分10
19秒前
雪白寒天发布了新的文献求助10
19秒前
19秒前
牛牛牛发布了新的文献求助50
20秒前
沐晴完成签到 ,获得积分10
21秒前
搜集达人应助碧蓝的往事采纳,获得10
21秒前
白白完成签到,获得积分10
23秒前
诺木发布了新的文献求助10
26秒前
lyzzz发布了新的文献求助10
28秒前
小巧凝丹发布了新的文献求助20
28秒前
KinKrit完成签到 ,获得积分10
29秒前
Hello应助十you八九采纳,获得10
29秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
《2024-2029年中国减肥产品行业市场分析及发展前景预测报告》 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4509469
求助须知:如何正确求助?哪些是违规求助? 3956216
关于积分的说明 12263813
捐赠科研通 3616656
什么是DOI,文献DOI怎么找? 1989967
邀请新用户注册赠送积分活动 1026398
科研通“疑难数据库(出版商)”最低求助积分说明 917812