Application of interpretable machine learning algorithms to predict distant metastasis in osteosarcoma

骨肉瘤 计算机科学 机器学习 人工智能 转移 算法 质量(理念) 医学 内科学 癌症研究 癌症 物理 量子力学
作者
Bing-Li Bai,Zongyi Wu,Sheji Weng,Qing Yang
出处
期刊:Cancer Medicine [Wiley]
卷期号:12 (4): 5025-5034 被引量:17
标识
DOI:10.1002/cam4.5225
摘要

Abstract Background Osteosarcoma is well‐established as the most common bone cancer in children and adolescents. Patients with localized disease have different prognoses and management than those with metastasis at the time of diagnosis. The purpose of this study was to explore potential risk factors for metastatic disease. Methods The Surveillance, Epidemiology, and End Results (SEER) Program database was used to identify patients diagnosed with osteosarcoma between 2004 and 2015. We developed prediction models for distant metastasis using six machine learning (ML) techniques, including logistic regression (LR), support vector machine (SVM), Gaussian Naive Bayes (GaussianNB), Extreme Gradient Boosting (XGBoost), random forest (RF), and k‐nearest neighbor algorithm (kNN). The adaptive synthetic (ADASYN) technique was used to deal with imbalanced data. The Shapley Additive Explanation (SHAP) analysis generated visualized explanations for each patient. Finally, the average precision (AP), sensitivity, specificity, accuracy, F1 score, precision‐recall curves, calibration plots, and decision curve analysis (DCA) were conducted to evaluate the models' effectiveness. Results The six machine learning algorithms achieved AP of 0.661–0.781 for predicting distant metastasis. The RF model yielded the best performance with an accuracy of 71.8 percent and an AP of 0.781 and was highly dependent on tumor size, primary surgery, and age. SHAP analysis provided model‐independent interpretation, highlighting significant clinical factors associated with the risk of metastasis in osteosarcoma patients. Conclusions An accurate machine learning‐based prediction model was established for metastasis in osteosarcoma patients to help clinicians during clinical decision‐making.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrQiu完成签到,获得积分10
2秒前
Piyush321发布了新的文献求助10
2秒前
kuzzi发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
阿德利企鹅完成签到,获得积分10
5秒前
星辰大海应助甪用采纳,获得10
5秒前
kjding完成签到,获得积分10
6秒前
Lee完成签到,获得积分10
7秒前
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
邓佳鑫Alan应助科研通管家采纳,获得10
8秒前
邓佳鑫Alan应助科研通管家采纳,获得10
8秒前
Noel应助明亮无颜采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
邓佳鑫Alan应助科研通管家采纳,获得10
8秒前
邓佳鑫Alan应助科研通管家采纳,获得10
8秒前
邓佳鑫Alan应助科研通管家采纳,获得10
8秒前
邓佳鑫Alan应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得80
8秒前
zhiyang发布了新的文献求助10
9秒前
孙ym发布了新的文献求助10
9秒前
10秒前
zfh1341完成签到,获得积分10
10秒前
11秒前
11秒前
13秒前
hui发布了新的文献求助10
13秒前
14秒前
15秒前
阳光he完成签到,获得积分10
15秒前
16秒前
cometx完成签到 ,获得积分10
16秒前
18秒前
善良的剑通应助小帅采纳,获得10
18秒前
Chengcheng发布了新的文献求助10
19秒前
20秒前
情怀应助ll采纳,获得10
20秒前
lizhiqian2024发布了新的文献求助10
20秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784418
求助须知:如何正确求助?哪些是违规求助? 3329484
关于积分的说明 10242453
捐赠科研通 3044982
什么是DOI,文献DOI怎么找? 1671481
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372