High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month

类有机物 再生(生物学) 老茧 材料科学 组织工程 生物医学工程 细胞生物学 生物 医学 植物
作者
Chang Xie,Renjie Liang,Jinchun Ye,Zhi Peng,Heng Sun,Qiuwen Zhu,Xilin Shen,Yi Hong,Hongwei Wu,Wei Sun,Xudong Yao,Jiajin Li,Shufang Zhang,Xianzhu Zhang,Hongwei Ouyang
出处
期刊:Biomaterials [Elsevier BV]
卷期号:288: 121741-121741 被引量:123
标识
DOI:10.1016/j.biomaterials.2022.121741
摘要

Large bone defects that cannot form a callus tissue are often faced with long-time recovery. Developmental engineering-based strategies with mesenchymal stem cell (MSC) aggregates have shown enhanced potential for bone regeneration. However, MSC aggregates are different from the physiological callus tissues, which limited the further endogenous osteogenesis. This study aims to achieve engineering of osteo-callus organoids for rapid bone regeneration in cooperation with bone marrow-derived stem cell (BMSC)-loaded hydrogel microspheres (MSs) by digital light-processing (DLP) printing technology and stepwise-induction. The printed MSC-loaded MSs aggregated into osteo-callus organoids after chondrogenic induction and showed much higher chondrogenic efficiency than that of traditional MSC pellets. Moreover, the osteo-callus organoids exhibited stage-specific gene expression pattern that recapitulated endochondral ossification process, as well as a synchronized state of cell proliferation and differentiation, which highly resembled the diverse cell compositions and behaviors of developmentally endochondral ossification. Lastly, the osteo-callus organoids efficiently led to rapid bone regeneration within only 4 weeks in a large bone defect in rabbits which need 2–3 months in previous tissue engineering studies. The findings suggested that in vitro engineering of osteo-callus organoids with developmentally osteogenic properties is a promising strategy for rapid bone defect regeneration and recovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GUAMIAN完成签到,获得积分10
1秒前
lj-TJUT发布了新的文献求助10
1秒前
Andrea0899发布了新的文献求助10
2秒前
2秒前
Unshouable完成签到,获得积分10
2秒前
guoqiang完成签到,获得积分10
3秒前
笑羽完成签到,获得积分0
3秒前
liu发布了新的文献求助20
3秒前
sahula完成签到,获得积分10
4秒前
科目三应助佳佳采纳,获得10
4秒前
懂冬冬发布了新的文献求助10
4秒前
4秒前
HAHAHA完成签到,获得积分10
5秒前
hj456完成签到,获得积分10
5秒前
Akim应助聪慧千万采纳,获得10
5秒前
SCULGJ发布了新的文献求助10
5秒前
5秒前
6秒前
psycho完成签到,获得积分10
6秒前
6秒前
6秒前
不摇碧莲完成签到 ,获得积分10
7秒前
renpp822发布了新的文献求助10
7秒前
不想上班了完成签到,获得积分10
7秒前
8秒前
hhh98完成签到,获得积分10
8秒前
8秒前
如月霖完成签到,获得积分10
8秒前
科研通AI6应助372925abc采纳,获得10
9秒前
lj-TJUT完成签到,获得积分10
9秒前
共享精神应助baobeikk采纳,获得10
9秒前
彩色的恋风完成签到,获得积分10
10秒前
pp发布了新的文献求助10
10秒前
大模型应助jianjian采纳,获得10
10秒前
Zoo应助duxh123采纳,获得20
10秒前
学术智子完成签到,获得积分10
10秒前
CQUw发布了新的文献求助10
10秒前
chen发布了新的文献求助10
11秒前
风约楚云关注了科研通微信公众号
11秒前
ZhijunXiang发布了新的文献求助10
11秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4230555
求助须知:如何正确求助?哪些是违规求助? 3763913
关于积分的说明 11826761
捐赠科研通 3423184
什么是DOI,文献DOI怎么找? 1878514
邀请新用户注册赠送积分活动 931565
科研通“疑难数据库(出版商)”最低求助积分说明 839262