已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Comparison of Two Models for Rolling Stock Scheduling

调度(生产过程) 库存(枪支) 计算机科学 工程类 运筹学 运输工程 运营管理 机械工程
作者
Boris Grimm,Rowan Hoogervorst,Ralf Borndörfer
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/trsc.2024.0505
摘要

A major step in the planning process of passenger railway operators is the assignment of rolling stock, that is, train units, to the trips of the timetable. A wide variety of mathematical optimization models have been proposed to support this task, which we discuss and argue to be justified in order to deal with operational differences between railway operators, and hence different planning requirements, in the best possible way. Our investigation focuses on two commonly used models, the composition model and the hypergraph model, that were developed for Netherlands Railways (NS) and DB Fernverkehr AG (DB), respectively. We compare these models in two distinct problem settings, an NS setting and DB-light setting and consider different model variants to tune the models to these settings. We prove that in both of these settings, the linear programming bounds of the two models are equally strong as long as a number of reasonable assumptions are met. However, through a numerical evaluation on NS and DB-light instances, we show that the numerical performance of the models strongly depends on the instances. Although the composition model is the most compact and fastest model for the NS instances, an adjusted version of this model grows quickly for the DB-light instances and is then outperformed by the considered hypergraph model variants. Moreover, we show that a depot-extended version of the hypergraph model is able to combine strengths of both models and show good performance on both the NS and DB-light instances. Funding: This work was supported by the Bundesministerium für Bildung und Forschung [Grant 05M14ZAM] and the Stichting Erasmus Trustfonds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
星辰大海应助xiaojingbao采纳,获得10
3秒前
4秒前
囡囡发布了新的文献求助10
6秒前
打打应助肥波采纳,获得10
7秒前
宋晓蓝发布了新的文献求助10
7秒前
8秒前
yangxi发布了新的文献求助10
9秒前
Danny发布了新的文献求助30
15秒前
eric888应助科研通管家采纳,获得100
16秒前
田様应助科研通管家采纳,获得10
17秒前
17秒前
andrele应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得50
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
17秒前
所所应助科研通管家采纳,获得30
17秒前
18秒前
852应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
偏爱走夜路完成签到,获得积分20
18秒前
18秒前
18秒前
yznfly应助科研通管家采纳,获得30
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
18秒前
汉堡包应助科研通管家采纳,获得10
18秒前
18秒前
19秒前
司空豁发布了新的文献求助10
20秒前
华仔应助动人的凡霜采纳,获得10
21秒前
宋晓蓝完成签到,获得积分10
21秒前
123456完成签到,获得积分10
22秒前
wssamuel完成签到 ,获得积分10
23秒前
24秒前
十一月的阴天完成签到 ,获得积分10
26秒前
滕永杰完成签到,获得积分10
27秒前
许宗蓥完成签到,获得积分20
32秒前
Joaquin完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
34秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
Learning to Listen, Listening to Learn 570
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3881400
求助须知:如何正确求助?哪些是违规求助? 3423794
关于积分的说明 10736081
捐赠科研通 3148696
什么是DOI,文献DOI怎么找? 1737379
邀请新用户注册赠送积分活动 838811
科研通“疑难数据库(出版商)”最低求助积分说明 784107