阳极
共价键
材料科学
锂(药物)
联轴节(管道)
金属有机骨架
金属锂
电荷(物理)
组分(热力学)
金属
催化作用
化学物理
共价有机骨架
接口(物质)
电极
纳米技术
化学
吸附
物理化学
有机化学
物理
内分泌学
冶金
热力学
毛细管作用
医学
复合材料
量子力学
毛细管数
作者
Zikang Chen,Jiajie Pan,Wenzhi Huang,Kaixiang Shi,Zihao Yang,Hao Wu,Shiqiang Wei,Guoxing Jiang,Wenwu Zou,Rui Zhang,Xu Li,Quanbing Liu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2025-03-25
被引量:3
标识
DOI:10.1021/acsnano.4c18473
摘要
Serialized lithium traveling on the solid electrolyte interphase (SEI) of the metal anode plays a dominant role in high-energy-density lithium metal batteries. Unsatisfactorily, irregular native SEI suffers from the Li+ local deposition and possesses low inorganic component content, which exacerbates the growth of lithium dendrites and leads to poor battery performance. Purposefully, we fabricated the porphyrin-based covalent organic frameworks (COF-366 and COF-367) as lithium metal anode interfaces. Concretely, heterogenetic segments within COFs nodes allocate electron situations to induce component-selective catalysis, of which electron-rich nitrogen atom sites urge the N–S cleavage of bis(trifluoromethylsulfonyl)azanide (TFSI–) and C–C breakage of 1,2-dimethoxyethane (DME), while electron-deficient benzene sites facilitate the C–O cleavage of 1,3-dioxolane (DOL), constructing a rich Li2O/LiF-rich modification of COFs interface. The well-constructed interface facilitates rapid Li+ migration, distributes charge evenly, and further increases the Li+ flux, which achieves uniform Li+ deposition and suppresses dendrite growth. Consequently, the COF-366@Li anode displayed outstanding capacity stability at a high current density of 5C after 400 cycles with a capacity of 53.37 mAh g–1 (70.99%). The COF-366@Li||LFP pouch cell further validated its practical application with an impressive capacity of 120.37 mAh g–1 and an excellent capacity retention of 92.42% after 43 cycles with a high cathode loading of 295.2 mg. This study demonstrates the feasibility of heterogeneity-segment of customized-type COFs to induce component-selective charge-coupling catalysis toward electrolytes and manipulate SEI inorganic components for stabilizing lithium metal anode.
科研通智能强力驱动
Strongly Powered by AbleSci AI