Sn9C15 monolayer with desirable bandgap, high carrier mobilities, and broadband light absorption for photovoltaic devices

单层 带隙 材料科学 光电子学 直接和间接带隙 半导体 异质结 电子迁移率 纳米技术
作者
Siyan Gao,Yifeng Zheng,Shan He,Haiping Fang,Yueyu Zhang
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:162 (13)
标识
DOI:10.1063/5.0254011
摘要

Two-dimensional carbon-based materials show considerable promise for applications in a wide range of fields, including aerospace, energy storage, and catalysis, due to their great advantages of abundant carbon resources, relatively low-cost, non-toxicity, and excellent physical and chemical properties. However, their applications in photovoltaics remain limited. Here, we first theoretically predict a stable Sn9C15 monolayer (space group P321). The Sn9C15 monolayer exhibits numerous advantages, which make it an ideal candidate for photovoltaic applications: (1) The Sn9C15 monolayer is a direct bandgap semiconductor with a bandgap of 1.70 eV, which is closer to the optimal bandgap of 1.50 eV for photovoltaic devices; (2) the Sn9C15 monolayer exhibits electron mobilities in excess of 2 × 103 cm2 V−1 s−1; (3) the Sn9C15 monolayer shows a direct bandgap of 1.50 eV under a 3% compressive biaxial strain; (4) the Sn9C15 monolayer shows a benign light absorption in the whole visible region (380–780 nm); (5) the Sn9C15 monolayer possesses an optical bandgap of 0.97 eV and an exciton binding energy of 1.63 eV; and (6) the Sn9C15/TMD heterostructures are predicted to have a power conversion efficiency of 9%–23%. In terms of its formation energy, we expect that the Sn9C15 monolayer will be fabricated similarly to the synthesized Si9C15 monolayer. Importantly, the target bandgap of the Sn9C15 monolayer is achieved by the synergistic mechanism of the crystal lattice spacing and the atomic contribution of band edges (referred to as lattice-band edge synergistic mechanism). We anticipate that this synergistic mechanism will facilitate the design of a great number of new materials with targeted bandgaps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
凯文完成签到 ,获得积分10
2秒前
2秒前
3秒前
xueshanfeihu发布了新的文献求助20
3秒前
包语梦发布了新的文献求助10
4秒前
胡兔子完成签到,获得积分10
4秒前
biyuezhu发布了新的文献求助10
4秒前
阔达碧空发布了新的文献求助200
5秒前
白紫寒发布了新的文献求助10
7秒前
etal5535发布了新的文献求助10
7秒前
7秒前
FWCY完成签到,获得积分20
8秒前
乐观小之应助肥波采纳,获得10
9秒前
HL完成签到 ,获得积分10
10秒前
Akim应助zcf采纳,获得10
10秒前
11秒前
积极诗霜完成签到,获得积分10
11秒前
李健应助自行设置采纳,获得10
13秒前
Zoe_Zhang完成签到 ,获得积分10
15秒前
15秒前
小于发布了新的文献求助10
15秒前
16秒前
cyan完成签到,获得积分10
17秒前
17秒前
健忘捕完成签到 ,获得积分10
17秒前
Qzf完成签到,获得积分10
18秒前
宋Jade发布了新的文献求助10
18秒前
yznfly应助王大可采纳,获得20
19秒前
重要冷之发布了新的文献求助10
21秒前
武琳捷发布了新的文献求助10
22秒前
夜安发布了新的文献求助10
22秒前
口口方完成签到,获得积分20
23秒前
Diligency发布了新的文献求助10
23秒前
传奇3应助小于采纳,获得10
23秒前
汉堡包应助现代早晨采纳,获得10
23秒前
26秒前
27秒前
JJ完成签到,获得积分10
27秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3901473
求助须知:如何正确求助?哪些是违规求助? 3446221
关于积分的说明 10843728
捐赠科研通 3171320
什么是DOI,文献DOI怎么找? 1752226
邀请新用户注册赠送积分活动 847073
科研通“疑难数据库(出版商)”最低求助积分说明 789681