吞吐量
财产(哲学)
高压
材料科学
纳米技术
工程物理
计算机科学
物理
电信
哲学
认识论
无线
作者
Lingjun He,Huanhuan Yang,Wen‐Yong Lai
摘要
Development of novel organic-inorganic hybrid perovskite materials with long-term stability and excellent optoelectronic properties is the current focus of the optoelectronic field. High pressure, as a special thermodynamic parameter, offers a promising avenue for discovering and designing materials with optimized performance. However, data-driven investigations on pressure-engineered structure-property relationships remain scarce, leading to an insufficient understanding of the physical rules by which pressure regulation influences the microstructure and electronic properties of materials. In this study, we conducted high-throughput first-principles calculations to construct a database of hundreds of cubic ABX3 candidates and evaluate their property evolutions under pressures ranging from 0 to 10 GPa. Through systematic assessments of the crystallographic stabilities, thermodynamic stabilities, and electronic properties, we obtained the following findings: the B-site metal predominantly determined the crystal structure stability; the X-site halogen governed the thermodynamic stability; and the ionic radius of the A-site organic cation played a pivotal role in modulating the electronic properties. Based on extensive theoretical calculations, this study confirmed the influence of the "single-component" effect, further enriching the existing knowledge that the synergistic changes in bond length or bond angle between the B-site and X-site under pressure are the main factors affecting the material properties. The insights derived from the current analysis provide a valuable foundation for the rational design of optimized OIHP materials under pressure.
科研通智能强力驱动
Strongly Powered by AbleSci AI