Spatial Inversion of Soil Organic Carbon Content Based on Hyperspectral Data and Sentinel‐2 Images

高光谱成像 反演(地质) 总有机碳 环境科学 遥感 土壤碳 内容(测量理论) 土壤科学 地质学 环境化学 土壤水分 数学 化学 古生物学 数学分析 构造盆地
作者
Xiaoyu Huang,Xuemei Wang,Yanping Guo,Baisong An
出处
期刊:Land Degradation & Development [Wiley]
标识
DOI:10.1002/ldr.5583
摘要

ABSTRACT Given that Sentinel‐2 (S2) multispectral images provide extensive spatial information and that ground‐based hyperspectral data capture refined spectral characteristics, their integration can enhance both the comprehensiveness and precision of surface information acquisition. This study seeks to leverage these data sources to develop an optimized estimation model for accurately monitoring large‐scale soil organic carbon (SOC) content, thereby addressing current limitations in multi‐source data fusion research. In this study, using mathematical transformation and discrete wavelet transform to process the ground hyperspectral data in the delta oasis of the Weigan and Kuqa rivers in Xinjiang, China, in combination with the S2 multispectral image, machine learning algorithms were employed to construct estimation models of SOC content for total variables and characteristic variables, and spatial inversion of SOC content in the oases was carried out. We found that the spectral transformation of R ‐DWT‐H9 can significantly enhance the correlation between spectral data and SOC content ( p < 0.001). The estimation accuracy of the models constructed based on the feature variables selected by SPA and IRIV was generally higher than that of the total variable models. The IRIV‐RFR model had the highest estimation accuracy and stable estimation capability. The values of R 2 for the training and validation sets were 0.66 and 0.64, respectively. The RMSE values were < 1.5 g∙kg −1 , and the values of RPD were > 1.4. In the interior of the oasis, the SOC content was mainly deficient (61.35%) or relatively deficient (8.17%), while on the periphery of the oasis, it was extremely deficient (30.48%). Combine ground hyperspectral data and S2 images to construct an inversion model for SOC content, thereby providing a reference for accurately evaluating soil fertility in arid oasis regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HaonanZhang发布了新的文献求助10
刚刚
刚刚
青松果发布了新的文献求助10
1秒前
3秒前
负责的汉堡完成签到 ,获得积分10
3秒前
彭于晏应助简耗子采纳,获得10
3秒前
烟花应助方圆几里采纳,获得10
4秒前
小不溜发布了新的文献求助10
6秒前
maoamo2024发布了新的文献求助10
6秒前
cdercder应助美味肉蟹煲采纳,获得10
7秒前
上官从菡发布了新的文献求助10
7秒前
柯语雪完成签到 ,获得积分10
7秒前
8秒前
10秒前
无花果应助ZZZ采纳,获得10
11秒前
大个应助干炸小黄鱼采纳,获得10
14秒前
15秒前
辰辰发布了新的文献求助10
15秒前
小蘑菇应助跳跃尔蓝采纳,获得50
16秒前
我姓孙完成签到,获得积分20
16秒前
小不溜完成签到,获得积分10
17秒前
如初给如初的求助进行了留言
17秒前
17秒前
19秒前
vvcat发布了新的文献求助10
19秒前
efine完成签到,获得积分10
20秒前
我姓孙发布了新的文献求助20
20秒前
21秒前
kk完成签到,获得积分10
21秒前
ztt1221完成签到,获得积分10
21秒前
安安完成签到 ,获得积分10
21秒前
美味肉蟹煲完成签到,获得积分20
21秒前
背后的小白菜完成签到,获得积分10
22秒前
琉璃苣发布了新的文献求助10
23秒前
24秒前
森sen完成签到 ,获得积分10
24秒前
刘亦平大美女应助anti采纳,获得10
24秒前
shouyu29完成签到,获得积分0
24秒前
sunc发布了新的文献求助10
26秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841896
求助须知:如何正确求助?哪些是违规求助? 3383900
关于积分的说明 10531898
捐赠科研通 3104154
什么是DOI,文献DOI怎么找? 1709514
邀请新用户注册赠送积分活动 823302
科研通“疑难数据库(出版商)”最低求助积分说明 773878