亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial Intelligence‐Driven Approaches in Semiconductor Research

纳米技术 计算机科学 半导体 管道(软件) 系统工程 数据科学 材料科学 人工智能 工程物理 工程类 光电子学 程序设计语言
作者
Yanping Zheng,Hao Xu,Zhexin Li,Linlin Li,Yongchao Yu,Pengfei Jiang,Yanmeng Shi,Jing Zhang,Yuqing Huang,Qing Luo,Zheng Lou,Lili Wang
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202504378
摘要

Abstract To address the persistent challenges of scaling and power consumption in integrated circuits and chips, recent research has focused on exploring novel semiconductor materials beyond silicon and designing new device architectures. The vastness of the material and parameter space poses significant challenges in terms of cost and efficiency for traditional experimental and computational methods. The rise of artificial intelligence (AI) offers a highly promising avenue for accelerating semiconductor technology development. AI‐driven methods demonstrate significant advantages in analyzing and interpreting large datasets, potentially freeing researchers to focus on more creative endeavors. This review provides a detailed and timely overview of how AI‐driven approaches are assisting researchers across the entire semiconductor research pipeline, encompassing materials discovery, semiconductor screening, synthesis, characterization, and device performance optimization, highlighting how their integration facilitates a holistic understanding of the entire processing‐structure‐property‐performance (PSPP) relationship. Remain challenges related to dataset quality, model generalizability, and autonomous experimentation, as well as the under‐application of AI to critical needs are discussed in the semiconductor field, such as wafer‐scale growth of high‐quality, single‐crystal semiconductor thin films beyond silicon. Addressing these challenges requires collaborative efforts from researchers across various organizations and disciplines, and represents a key focus for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmyhn应助sofardli采纳,获得20
4秒前
7秒前
14秒前
sofardli完成签到,获得积分10
22秒前
吾日三省吾身完成签到 ,获得积分10
22秒前
无情听南完成签到,获得积分10
30秒前
moiaoh完成签到 ,获得积分10
37秒前
Benhnhk21完成签到,获得积分10
49秒前
1分钟前
1分钟前
今后应助春秋大人采纳,获得10
1分钟前
1分钟前
Lucas应助科研通管家采纳,获得10
2分钟前
herococa应助科研通管家采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得30
2分钟前
kw98完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
艾米完成签到,获得积分20
2分钟前
2分钟前
动听雁山完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
春秋大人发布了新的文献求助10
3分钟前
3分钟前
草木发布了新的文献求助10
3分钟前
3分钟前
3分钟前
共享精神应助Gaopkid采纳,获得10
3分钟前
Gaopkid完成签到,获得积分10
3分钟前
大模型应助草木采纳,获得10
4分钟前
4分钟前
春秋大人发布了新的文献求助10
4分钟前
4分钟前
kyn完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Hayat应助kyn采纳,获得10
4分钟前
Rose林发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3937793
求助须知:如何正确求助?哪些是违规求助? 3483238
关于积分的说明 11022604
捐赠科研通 3213229
什么是DOI,文献DOI怎么找? 1776048
邀请新用户注册赠送积分活动 862304
科研通“疑难数据库(出版商)”最低求助积分说明 798402