Estimating and presenting non-linear associations with restricted cubic splines

医学 数学 统计
作者
Andrea Discacciati,Michael G. Palazzolo,Jeong‐Gun Park,Giorgio Melloni,Sabina A. Murphy,Andrea Bellavia
出处
期刊:International Journal of Epidemiology [Oxford University Press]
卷期号:54 (4)
标识
DOI:10.1093/ije/dyaf088
摘要

Abstract Most of the regression models commonly used in epidemiology—including logistic regression and methods for time-to-event outcomes such as Cox regression—define the relationship between a set of covariates and the outcome of interest using linear functions, thus making implicit assumptions of linearity for continuous covariates. Categorizing continuous covariates, which represents a common option to address non-linearities, introduces additional assumptions and has recognized limitations in terms of results interpretation. Restricted cubic splines (RCS) offer a flexible alternative tool that can improve the model fit in the presence of non-linear associations, overcoming many of the limitations of categorical approaches and providing information on the shape of the exposure–outcome relationship. Including RCS transformations in regression models, however, is not straightforward analytically and presents challenges in terms of interpretation and graphical presentation of the exposure–outcome association. In this paper, we provide an introduction to the application of RCS in regression modeling for assessing non-linear exposure–outcome associations in epidemiological studies. We present RCS as a flexible extension of categorization and describe the two key steps of integrating RCS in regression: model fitting and graphical presentation. We detail key considerations that can guide the choice of RCS transformations, the interpretation of regression output, and the translation of regression results into graphical displays of the exposure–outcome association. To accompany this presentation, we also provide a set of functions and examples in R, Stata, and SAS, thereby providing a comprehensive set of tools for flexibly and robustly incorporating continuous covariates into regression modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎采白完成签到 ,获得积分10
刚刚
wshujez发布了新的文献求助10
刚刚
王龙伟完成签到,获得积分10
2秒前
2秒前
ffffabab完成签到,获得积分10
3秒前
绿色催化发布了新的文献求助10
3秒前
6秒前
科目三应助shan采纳,获得10
6秒前
危机的纸飞机完成签到,获得积分20
7秒前
真水无香应助hsh采纳,获得10
7秒前
果汁橡皮糖完成签到,获得积分10
8秒前
luhuitou发布了新的文献求助10
9秒前
勤劳宛菡完成签到 ,获得积分10
9秒前
Snoopy发布了新的文献求助10
10秒前
JamesPei应助优美的夏天采纳,获得10
12秒前
CAOHOU应助ffffabab采纳,获得10
12秒前
YamDaamCaa应助钟迪采纳,获得100
12秒前
领导范儿应助mm采纳,获得10
13秒前
Leeu完成签到,获得积分10
14秒前
星禾吾完成签到,获得积分10
15秒前
英俊的念寒完成签到,获得积分10
16秒前
达夫斯基完成签到,获得积分10
16秒前
16秒前
18秒前
19秒前
香蕉觅云应助luhuitou采纳,获得10
19秒前
Xielin完成签到,获得积分10
20秒前
22秒前
Zongpeng完成签到,获得积分10
22秒前
QRY完成签到,获得积分10
22秒前
积极的明天完成签到,获得积分10
22秒前
wshujez关注了科研通微信公众号
23秒前
卡皮巴拉发布了新的文献求助10
23秒前
23秒前
研友_VZG7GZ应助霜降采纳,获得10
24秒前
25秒前
26秒前
27秒前
28秒前
鸣蛩发布了新的文献求助10
30秒前
高分求助中
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
Cysteine protease ervatamin-B-like-mediated spermatophore digestion and sperm release impair fertility of Plutella xylostella females 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126004
求助须知:如何正确求助?哪些是违规求助? 3663545
关于积分的说明 11592803
捐赠科研通 3363408
什么是DOI,文献DOI怎么找? 1848078
邀请新用户注册赠送积分活动 912211
科研通“疑难数据库(出版商)”最低求助积分说明 827907