Spectral dual-layer detector CT-based radiomics-deep learning for predicting pathological aggressiveness of stage I lung adenocarcinoma: discrimination of precursor glandular lesions and invasive adenocarcinomas

无线电技术 腺癌 医学 阶段(地层学) 病态的 肺癌 双层 病理 放射科 人工智能 癌症 图层(电子) 内科学 计算机科学 生物 古生物学 有机化学 化学
作者
Tong Wang,Zheng Fan,Yong Yue,X. Lu,Xiaoxu Deng,Yang Hou
出处
期刊:Translational lung cancer research [AME Publishing Company]
卷期号:14 (2): 431-448
标识
DOI:10.21037/tlcr-24-726
摘要

Accurate diagnosis of early-stage lung adenocarcinoma (LA) subtypes is crucial for optimal patient management. Radiomics extract features from medical images reflect underlying biological information, while effective atomic number (Zeff) from new-generation spectral dual-layer detector computed tomography (SDCT) reflects tissue composition. This study evaluated the utility of SDCT-Zeff-based radiomics, deep learning (DL), and clinical features to differentiate between ground-glass nodule (GGN)-featured precursor glandular lesions (PGLs) and adenocarcinomas. Patients diagnosed with GGN who underwent preoperative contrast-enhanced SDCT at two medical centers were prospectively enrolled between January 2022 and April 2024. Center 1 (Shengjing Hospital of China Medical University; n=582) served as the training cohort, while Center 2 (Shengjing Hospital, Huaxiang Branch; n=210) served as the external validation cohort. SDCT-Zeff delineated the region of interest (ROI) for radiomics feature extraction. A pre-trained ResNet50 model was used for DL feature extraction. Features were fused, screened, and integrated with various machine learning algorithms and clinical features to construct a clinical-based DL radiomics (DLR) signature nomogram, which was externally validated. Model performance was assessed regarding identification, calibration, and clinical utility. A total of 792 GGNs were analyzed, classified as glandular precursor lesions (n=296) and adenocarcinomas (n=496). Zeff was inversely correlated with invasiveness. Three features were obtained: clinical, radiomics, and DL. LightGBM was identified as the best-performing model. The area under the curves (AUCs) of DLR in the training and test sets were 0.974 [95% confidence interval (CI): 0.963-0.983] and 0.827 (95% CI: 0.770-0.884), outperforming radiomics (AUC =0.897 and 0.765), and DL (AUC =0.929 and 0.758). The nomogram coupling clinical features [Zeff_a, electron density (ED)_a, and tumor abnormal protein (TAP)] showed the best predictive ability, with AUCs of 0.983 (95% CI: 0.974-0.990) and 0.833 (95% CI: 0.779-0.885) in the training and test sets. The calibration curve indicated strong agreement between predicted and observed outcomes in both cohorts. Decision curve analysis (DCA) revealed that this nomogram offers significant clinical benefits, with a threshold probability range surpassing other models. The coupled nomogram integrating SDCT-Zeff DLR with clinical features demonstrated improved predictive performance and was particularly effective in detecting GGN-featured glandular precursor lesions and adenocarcinomas. It provides a foundation for managing GGNs and offers valuable insights for preoperative evaluation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tianyue完成签到,获得积分10
3秒前
Slide完成签到 ,获得积分10
3秒前
天真若云完成签到,获得积分10
3秒前
4秒前
香蕉觅云应助颜老大采纳,获得10
5秒前
馆长举报LN求助涉嫌违规
5秒前
6秒前
熊猫小肿完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
10秒前
buyi发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
林lin发布了新的文献求助10
15秒前
akun完成签到,获得积分10
15秒前
Owen应助CC采纳,获得10
16秒前
16秒前
FashionBoy应助野性的博涛采纳,获得10
17秒前
zzr发布了新的文献求助10
17秒前
颜老大发布了新的文献求助10
17秒前
18秒前
12345完成签到,获得积分10
18秒前
研友_892kOL完成签到,获得积分10
18秒前
嗯哼发布了新的文献求助10
18秒前
19秒前
苗苗043完成签到,获得积分10
20秒前
勤耕苦读完成签到,获得积分10
22秒前
木c发布了新的文献求助10
23秒前
健忘完成签到,获得积分10
24秒前
26秒前
老实小懒猪完成签到,获得积分10
27秒前
Fran07完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助200
28秒前
28秒前
xixi完成签到 ,获得积分10
29秒前
数学练习册完成签到,获得积分10
29秒前
动人的听云完成签到,获得积分10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
载人航天技术(下册)载人航天出版工程 作者:陈善广 ISBN:9787515914695 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4650927
求助须知:如何正确求助?哪些是违规求助? 4038319
关于积分的说明 12491039
捐赠科研通 3728475
什么是DOI,文献DOI怎么找? 2057976
邀请新用户注册赠送积分活动 1088707
科研通“疑难数据库(出版商)”最低求助积分说明 969809