计算机科学
相关性(法律)
客观性(哲学)
主题模型
过程(计算)
情报检索
数字图书馆
潜在语义分析
数据科学
任务(项目管理)
操作系统
经济
法学
政治学
认识论
管理
诗歌
文学类
哲学
艺术
作者
Boussaadi Smail,Hassina Aliane,Ouahabi Abdeldjalil
标识
DOI:10.1007/s10639-023-11817-2
摘要
The search for relevant scientific articles is a crucial step in any research project. However, the vast number of articles published and available online in digital databases (Google Scholar, Semantic Scholar, etc.) can make this task tedious and negatively impact a researcher's productivity. This article proposes a new method of recommending scientific articles that takes advantage of content-based filtering. The challenge is to target relevant information that meets a researcher's needs, regardless of their research domain. Our recommendation method is based on semantic exploration using latent factors. Our goal is to achieve an optimal topic model that will serve as the basis for the recommendation process. Our experiences confirm our performance expectations, showing relevance and objectivity in the results.
科研通智能强力驱动
Strongly Powered by AbleSci AI