AI impacts on supply chain performance : a manufacturing use case study

计算机科学 供应链 分析 知识管理 杠杆(统计) 可扩展性 云计算 适应性 知识共享 过程管理 人工智能 数据科学 工程类 业务 生态学 营销 数据库 生物 操作系统
作者
Stefan Walter
出处
期刊:Discover Artificial Intelligence [Springer Nature]
卷期号:3 (1) 被引量:15
标识
DOI:10.1007/s44163-023-00061-9
摘要

Abstract The integration of cross-company activities to form global supply chains (SC) has several benefits, including reducing costs, minimizing energy and resource waste, and promoting relationships for improving all network actors. However, as the number of tiers of suppliers and customers increases, monitoring processes and identifying problems becomes more challenging, which can threaten the continuity of the SC. To address this issue, the EU knowlEdge project proposes using artificial intelligence (AI) solutions that are distributed, scalable, and collaborative to enable automatic monitoring and learning in the SC. This approach replaces rigid organization with flexible networks that leverage self-learning algorithms and automatic value creation, thereby facilitating knowledge sharing. The project unifies technologies from various domains, including AI, data analytics, edge, and cloud computing, into a software architecture that offers a systemic solution rather than an incremental improvement. This architecture enhances SC performance, including adaptability and autonomy, and enables industry to adopt adaptive strategies. The platform’s functionality is tested in manufacturing, where it will improve production monitoring and planning and enable human intervention and learning. The AI application is expected to increase performance on various business and production indicators, which will also have an impact beyond the factory floor. With this approach, managers can respond quickly to changing customer requirements, while deviations in planned processes can be addressed more effectively. Additionally, the research conducted by the project will provide insights into future management and learning in SC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助zhai采纳,获得10
1秒前
chenyu完成签到,获得积分10
1秒前
AGuang应助三岁半采纳,获得10
1秒前
1秒前
1秒前
梅零落发布了新的文献求助10
2秒前
hahahaha完成签到,获得积分10
2秒前
狂野萤完成签到,获得积分10
2秒前
认真乐双完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
无花果应助胡子采纳,获得10
3秒前
3秒前
犹豫大树给犹豫大树的求助进行了留言
3秒前
3秒前
22发布了新的文献求助10
4秒前
小米完成签到,获得积分10
4秒前
燮老板的账号完成签到,获得积分10
4秒前
李萌萌发布了新的文献求助10
4秒前
我是老大应助Yuanyuan采纳,获得10
4秒前
CodeCraft应助晨曦采纳,获得10
5秒前
5秒前
深情安青应助ning采纳,获得10
5秒前
5秒前
研友_Z72JMn完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
6秒前
玺白白发布了新的文献求助10
7秒前
我是老大应助yixing采纳,获得10
7秒前
7秒前
奋斗荣轩发布了新的文献求助10
7秒前
8秒前
苗条的老九完成签到,获得积分10
8秒前
8秒前
黑化小狗完成签到 ,获得积分10
8秒前
8秒前
款款完成签到,获得积分20
8秒前
9秒前
朴实的亿先完成签到,获得积分10
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707