亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intelligent fault diagnosis for triboelectric nanogenerators via a novel deep learning framework

摩擦电效应 计算机科学 断层(地质) 卷积神经网络 人工神经网络 深度学习 人工智能 材料科学 地质学 复合材料 地震学
作者
Hao Wu,Xingang Xu,Chuanfu Xin,Yichen Liu,Runze Rao,Zhongjie Li,Dan Zhang,Yongxi Wu,Senzhe Han
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:226: 120244-120244 被引量:16
标识
DOI:10.1016/j.eswa.2023.120244
摘要

Triboelectric nanogenerators (TENGs) provide a new approach to converting mechanical energy into electric power. Although many researchers have made progress in the improvement of the electric output of TENG, the service life of the electronic components in TENG is generally shorter than that of the stator or rotor windings in conventional generators. Considering that the fault of electronic components in TENG results in a decline in the electric output, which may subsequently increase the usage cost and even endanger the users of the TENG-based self-power devices. Thus, it is necessary to provide parametric schemes for the high-reliable iterative optimization design of TENG by identifying the fault-susceptible components in TENG. This study proposes a novel deep learning framework based on an attention neural network (AttCNN) for the fault diagnosis of TENG. The proposed method integrates the attention mechanism and convolutional network. Therein, the global correlation features in voltage signals extracted by the attention mechanism can effectively reflect the status variation of TENG among different moments, and the feature information extracted by the convolutional network guarantees the fault diagnosis efficiency of TENG. Thereby the proposed method fills in the gaps in the field of fault diagnosis for TENG. In the case study, the fault diagnosis performance of the proposed method for an experimental TENG is analyzed. The results indicate that the predicted and real status of TENG are in good agreement, validating the effectiveness of the proposed method for the fault diagnosis of TENG. Moreover, the results reveal that the proposed method possesses a promising generalization performance, demonstrating the feasibility of the application of the proposed method for the real-time fault diagnosis of TENG. A comparative analysis illustrates that the performance of the proposed method is better than that of recently published data-driven methods in terms of fault diagnosis accuracy and efficiency. Hence, the results of the case study indicate that the proposed method has the characteristic of high efficiency, high accuracy, and well-generalization, thereby the application of the proposed method is conducive to the safe operation of TENG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
熊猫小肿发布了新的文献求助10
8秒前
熊猫小肿完成签到,获得积分10
19秒前
23秒前
40秒前
zbzb发布了新的文献求助10
46秒前
51秒前
57秒前
孙燕应助沐熙采纳,获得10
1分钟前
1分钟前
1分钟前
11发布了新的文献求助10
1分钟前
zbzb完成签到,获得积分10
1分钟前
matthewa完成签到,获得积分10
1分钟前
1分钟前
haralee完成签到 ,获得积分10
1分钟前
2分钟前
孙燕应助沐熙采纳,获得10
2分钟前
2分钟前
ygl0217发布了新的文献求助10
2分钟前
2分钟前
ygl0217完成签到,获得积分10
2分钟前
李健应助matthewa采纳,获得10
2分钟前
3分钟前
孙燕应助沐熙采纳,获得10
3分钟前
3分钟前
mingjiang发布了新的文献求助10
3分钟前
情怀应助mingjiang采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
Owen应助hm采纳,获得10
4分钟前
momo完成签到,获得积分10
5分钟前
5分钟前
matthewa发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
hm发布了新的文献求助10
5分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
Molecular Representations for Machine Learning 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833846
求助须知:如何正确求助?哪些是违规求助? 3376298
关于积分的说明 10492559
捐赠科研通 3095843
什么是DOI,文献DOI怎么找? 1704723
邀请新用户注册赠送积分活动 820084
科研通“疑难数据库(出版商)”最低求助积分说明 771842