CoxNAM: An interpretable deep survival analysis model

可解释性 计算机科学 比例危险模型 生存分析 人工智能 机器学习 反向传播 事件(粒子物理) 人工神经网络 加速失效时间模型 危害 功能(生物学) 数据挖掘 统计 数学 协变量 物理 生物 进化生物学 有机化学 化学 量子力学
作者
Liangchen Xu,Chonghui Guo
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:227: 120218-120218 被引量:20
标识
DOI:10.1016/j.eswa.2023.120218
摘要

Survival analysis is widely used in medicine, engineering, economics and other fields as an effective method to model the relation between the time of an event of interest occurring and related features. However, traditional survival analysis models lack the ability to capture nonlinearity. In addition, most nonlinear survival analysis models, especially deep learning-based methods, lack interpretability, which limits the practical application of these models. For these gaps, we proposed an interpretable deep survival analysis model named CoxNAM. This model is based on the Cox proportion hazards model and uses neural additive model to predict the hazard function. We also used the backpropagation algorithm to train the model based on the corresponding loss function. When performing a survival analysis, we can obtain the survival functions, shape functions of features, and the importance of related features while predicting the probability of the occurrence of the event of interest. We conducted numerical experiments on two synthetic datasets and one public breast cancer dataset to verify the performance of the model, at the same time, we compared the interpretability with the SHAP framework on the two synthetic datasets and the results demonstrated the effectiveness of the proposed model's interpretation. We also applied the model for prognostic analysis of gastric cancer patients to illustrate its application. The experimental results indicate that the proposed model performs better on C-index than the classic statistical survival analysis model (i.e., Cox proportional hazards model) and machine learning-based survival analysis models (i.e., random survival forest and DeepSurv), and it can also provide the importance of features related to the time of the occurrence of events of interest and the effect of the feature values on the results. The proposed method shows promising performance and realistic interpretability. The model can potentially be extended to survival analysis problems in multiple domains for relevant decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助小天才123采纳,获得10
刚刚
Bonnienuit发布了新的文献求助30
1秒前
3秒前
科研通AI2S应助Devil采纳,获得30
5秒前
7秒前
小天才123完成签到,获得积分10
7秒前
8秒前
pan发布了新的文献求助10
10秒前
11秒前
小天才123发布了新的文献求助10
12秒前
背后的海之完成签到,获得积分10
16秒前
科研通AI2S应助清脆乐曲采纳,获得10
16秒前
pan完成签到,获得积分10
18秒前
111发布了新的文献求助10
18秒前
20秒前
21秒前
shhoing应助草木采纳,获得10
22秒前
感动的安柏完成签到 ,获得积分10
24秒前
吕老姆完成签到,获得积分10
24秒前
Devil发布了新的文献求助30
26秒前
29秒前
30秒前
31秒前
33秒前
双儿发布了新的文献求助30
34秒前
飞于云层之上完成签到,获得积分20
35秒前
细心的岩发布了新的文献求助30
35秒前
书篆完成签到,获得积分10
38秒前
yoli发布了新的文献求助30
38秒前
永远完成签到,获得积分10
39秒前
40秒前
Hello应助单纯的爆米花采纳,获得10
41秒前
Jodie发布了新的文献求助10
44秒前
852应助aaa采纳,获得10
49秒前
shhoing应助书篆采纳,获得10
53秒前
小马甲应助shuide采纳,获得10
57秒前
依依啵啵啵完成签到,获得积分10
59秒前
1分钟前
子车茗应助科研通管家采纳,获得30
1分钟前
Dean应助科研通管家采纳,获得50
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558025
求助须知:如何正确求助?哪些是违规求助? 4642970
关于积分的说明 14670108
捐赠科研通 4584465
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489009
关于科研通互助平台的介绍 1459631