Deep Learning-Assisted Transmit Antenna Classifiers for Fully Generalized Spatial Modulation: Online Efficiency Replaces Offline Complexity

计算机科学 人工智能 延迟(音频) 深度学习 人工神经网络 卷积神经网络 误码率 支持向量机 模式识别(心理学) 机器学习 频道(广播) 电信
作者
Hindavi Jadhav,Vinoth Babu Kumaravelu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (8): 5134-5134 被引量:3
标识
DOI:10.3390/app13085134
摘要

In this work, deep learning (DL)-based transmit antenna selection (TAS) strategies are employed to enhance the average bit error rate (ABER) and energy efficiency (EE) performance of a spectrally efficient fully generalized spatial modulation (FGSM) scheme. The Euclidean distance-based antenna selection (EDAS), a frequently employed TAS technique, has a high search complexity but offers optimal ABER performance. To address TAS with minimal complexity, we present DL-based approaches that reframe the traditional TAS problem as a classification learning problem. To reduce the energy consumption and latency of the system, we presented three DL architectures in this study, namely a feed-forward neural network (FNN), a recurrent neural network (RNN), and a 1D convolutional neural network (CNN). The proposed system can efficiently process and make predictions based on the new data with minimal latency, as DL-based modeling is a one-time procedure. In addition, the performance of the proposed DL strategies is compared to two other popular machine learning methods: support vector machine (SVM) and K-nearest neighbor (KNN). While comparing DL architectures with SVM on the same dataset, it is seen that the proposed FNN architecture offers a ~3.15% accuracy boost. The proposed FNN architecture achieves an improved signal-to-noise ratio (SNR) gain of ~2.2 dB over FGSM without TAS (FGSM-WTAS). All proposed DL techniques outperform FGSM-WTAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwewew发布了新的文献求助10
刚刚
苹果发布了新的文献求助10
刚刚
Zhen完成签到 ,获得积分10
刚刚
yxl01yxl完成签到,获得积分10
1秒前
情怀应助你在采纳,获得10
1秒前
1秒前
Arthur完成签到,获得积分10
1秒前
zz完成签到,获得积分10
2秒前
猪猪hero应助Sebastian采纳,获得10
2秒前
ZWGS发布了新的文献求助10
3秒前
木木完成签到 ,获得积分10
3秒前
ding应助小一采纳,获得10
4秒前
4秒前
Jane完成签到 ,获得积分10
4秒前
Zhen关注了科研通微信公众号
4秒前
yolo发布了新的文献求助30
5秒前
Singularity应助妙妙脆角采纳,获得10
5秒前
5秒前
choumaoo发布了新的文献求助10
5秒前
晓生完成签到,获得积分10
6秒前
ZY发布了新的文献求助10
6秒前
Akim应助文安采纳,获得10
7秒前
Fantastic发布了新的文献求助10
7秒前
蹲坑的撕裂者完成签到,获得积分10
8秒前
hyp完成签到,获得积分10
8秒前
dudu发布了新的文献求助10
8秒前
科研通AI2S应助ZWGS采纳,获得10
9秒前
Lucas应助派大星采纳,获得30
10秒前
皮凡发布了新的文献求助10
10秒前
11秒前
洁净的易巧完成签到,获得积分10
11秒前
12秒前
cui123完成签到 ,获得积分10
13秒前
13秒前
达达完成签到,获得积分10
15秒前
harry完成签到,获得积分10
15秒前
zzy发布了新的文献求助10
16秒前
yolo完成签到,获得积分10
16秒前
冷静博超完成签到,获得积分10
16秒前
Robert完成签到,获得积分10
16秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793457
求助须知:如何正确求助?哪些是违规求助? 3338316
关于积分的说明 10289420
捐赠科研通 3054869
什么是DOI,文献DOI怎么找? 1676193
邀请新用户注册赠送积分活动 804208
科研通“疑难数据库(出版商)”最低求助积分说明 761789