计算机科学
修剪
点云
人工智能
压缩(物理)
水准点(测量)
帧(网络)
数据压缩
计算复杂性理论
动作(物理)
过程(计算)
点(几何)
任务(项目管理)
机器学习
模式识别(心理学)
算法
数学
材料科学
物理
大地测量学
量子力学
农学
复合材料
生物
地理
操作系统
几何学
电信
管理
经济
作者
Jinyang Guo,Jiaheng Liu,Dong Xu
标识
DOI:10.1109/tcsvt.2022.3197395
摘要
The existing end-to-end optimized 3D action recognition methods often suffer from high computational costs. Observing that different frames and different points in point cloud sequences often have different importance values for the 3D action recognition task, in this work, we propose a fully automatic model compression framework called 3D-Pruning (3DP) for efficient 3D action recognition. After performing model compression by using our 3DP framework, the compressed model can process different frames and different points in each frame by using different computational complexities based on their importance values, in which both the importance value and computational complexity for each frame/point can be automatically learned. Extensive experiments on five benchmark datasets demonstrate the effectiveness of our 3DP framework for model compression.
科研通智能强力驱动
Strongly Powered by AbleSci AI