已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A novel hybrid machine learning model for rapid assessment of wave and storm surge responses over an extended coastal region

风暴潮 计算机科学 主成分分析 自编码 降维 波浪模型 人工神经网络 概率逻辑 环境科学 风暴 机器学习 气象学 人工智能 物理
作者
Saeed Saviz Naeini,Reda Snaiki
出处
期刊:Coastal Engineering [Elsevier BV]
卷期号:190: 104503-104503 被引量:7
标识
DOI:10.1016/j.coastaleng.2024.104503
摘要

Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm surge and waves, they are not practical to be employed for probabilistic analysis, risk assessment or rapid prediction due to their high computational demands. In this study, a novel hybrid model combining dimensionality reduction and data-driven techniques is developed for rapid assessment of waves and storm surge responses over an extended coastal region. Specifically, the hybrid model simultaneously identifies a low-dimensional representation of the high-dimensional spatial system based on a deep autoencoder (DAE) while mapping the storm parameters to the obtained low-dimensional latent space using a deep neural network (DNN). To train the hybrid model, a combined weighted loss function is designed to encourage a balance between DAE and DNN training and achieve the best accuracy. The performance of the hybrid model is evaluated through a case study using the synthetic data from the North Atlantic Comprehensive Coastal Study (NACCS) covering critical regions within New York and New Jersey. In addition, the proposed approach is compared with two decoupled models where the regression model is based on DNN and the reduction techniques are either principal component analysis (PCA) or DAE which are trained separately from the DNN model. High accuracy and computational efficiency are observed for the hybrid model which could be readily implemented as part of early warning systems or probabilistic risk assessment of waves and storm surge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤翠容完成签到,获得积分20
刚刚
苹果寇完成签到 ,获得积分10
刚刚
zzz发布了新的文献求助10
刚刚
断罪残影完成签到,获得积分10
2秒前
孙文杰完成签到 ,获得积分10
2秒前
火火火完成签到,获得积分10
4秒前
6秒前
CCsouljump完成签到 ,获得积分10
6秒前
6秒前
上官若男应助小太阳采纳,获得40
9秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得30
12秒前
慕青应助科研通管家采纳,获得10
12秒前
12秒前
何不可应助科研通管家采纳,获得10
12秒前
爆米花应助姜姜采纳,获得30
13秒前
端庄亦巧完成签到 ,获得积分10
15秒前
KEEP发布了新的文献求助20
16秒前
信封里的太阳完成签到 ,获得积分10
17秒前
18秒前
强健的迎波完成签到,获得积分10
18秒前
18秒前
燕尔蓝完成签到,获得积分10
19秒前
Persist完成签到 ,获得积分10
22秒前
FYhan完成签到 ,获得积分10
23秒前
忧郁书双发布了新的文献求助10
23秒前
23秒前
jx000811发布了新的文献求助10
25秒前
shea发布了新的文献求助10
25秒前
27秒前
开心的帽子完成签到,获得积分10
28秒前
白rain发布了新的文献求助10
28秒前
GuoshenZhong完成签到,获得积分10
29秒前
香蕉觅云应助冒牌唐僧采纳,获得10
30秒前
GuoshenZhong发布了新的文献求助10
31秒前
lim完成签到 ,获得积分10
33秒前
斯文败类应助shea采纳,获得10
34秒前
快乐寄风完成签到 ,获得积分10
36秒前
英俊的铭应助539采纳,获得10
38秒前
听雨完成签到 ,获得积分10
39秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847469
求助须知:如何正确求助?哪些是违规求助? 3390117
关于积分的说明 10560745
捐赠科研通 3110478
什么是DOI,文献DOI怎么找? 1714375
邀请新用户注册赠送积分活动 825212
科研通“疑难数据库(出版商)”最低求助积分说明 775340