亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-channel Optimization Generative Model for Stable Ultra-Sparse-View CT Reconstruction

一致性(知识库) 迭代重建 推论 数据一致性 计算机科学 人工智能 基本事实 理论(学习稳定性) 生成模型 数学优化 频道(广播) 过程(计算) 算法 机器学习 数学 生成语法 操作系统 计算机网络
作者
Wei‐Wen Wu,Jiayi Pan,Yanyang Wang,Shaoyu Wang,Jianjia Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (10): 3461-3475 被引量:28
标识
DOI:10.1109/tmi.2024.3376414
摘要

Score-based generative model (SGM) has risen to prominence in sparse-view CT reconstruction due to its impressive generation capability. The consistency of data is crucial in guiding the reconstruction process in SGM-based reconstruction methods. However, the existing data consistency policy exhibits certain limitations. Firstly, it employs partial data from the reconstructed image of iteration process for image updates, which leads to secondary artifacts with compromising image quality. Moreover, the updates to the SGM and data consistency are considered as distinct stages, disregarding their interdependent relationship. Additionally, the reference image used to compute gradients in the reconstruction process is derived from intermediate result rather than ground truth. Motivated by the fact that a typical SGM yields distinct outcomes with different random noise inputs, we propose a Multi-channel Optimization Generative Model (MOGM) for stable ultra-sparse-view CT reconstruction by integrating a novel data consistency term into the stochastic differential equation model. Notably, the unique aspect of this data consistency component is its exclusive reliance on original data for effectively confining generation outcomes. Furthermore, we pioneer an inference strategy that traces back from the current iteration result to ground truth, enhancing reconstruction stability through foundational theoretical support. We also establish a multi-channel optimization reconstruction framework, where conventional iterative techniques are employed to seek the reconstruction solution. Quantitative and qualitative assessments on 23 views datasets from numerical simulation, clinical cardiac and sheep's lung underscore the superiority of MOGM over alternative methods. Reconstructing from just 10 and 7 views, our method consistently demonstrates exceptional performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸡狗不如完成签到,获得积分10
1秒前
2秒前
无私航空发布了新的文献求助10
6秒前
俏皮元珊完成签到 ,获得积分10
44秒前
科研通AI5应助yuuu采纳,获得10
48秒前
52秒前
57秒前
传奇3应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
完美世界应助无私航空采纳,获得10
1分钟前
yuuu发布了新的文献求助10
1分钟前
1分钟前
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
wykion完成签到,获得积分0
1分钟前
王讯完成签到,获得积分10
1分钟前
1分钟前
伶俐皮卡丘完成签到,获得积分10
1分钟前
无私航空发布了新的文献求助10
1分钟前
Lucas应助无私航空采纳,获得10
1分钟前
1分钟前
ld发布了新的文献求助10
2分钟前
Owen应助yuuu采纳,获得10
2分钟前
ld完成签到,获得积分20
2分钟前
微卫星不稳定完成签到 ,获得积分0
2分钟前
MGraceLi_sci完成签到,获得积分10
2分钟前
袁小二完成签到 ,获得积分10
2分钟前
平淡如天完成签到,获得积分10
2分钟前
酷波er应助landiao采纳,获得10
2分钟前
Yan应助科研通管家采纳,获得10
3分钟前
3分钟前
landiao发布了新的文献求助10
3分钟前
六六六完成签到 ,获得积分10
3分钟前
3分钟前
landiao完成签到,获得积分10
3分钟前
咯咯咯完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
drirshad完成签到,获得积分10
4分钟前
一一关注了科研通微信公众号
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851516
求助须知:如何正确求助?哪些是违规求助? 4150235
关于积分的说明 12856638
捐赠科研通 3898154
什么是DOI,文献DOI怎么找? 2142373
邀请新用户注册赠送积分活动 1162143
关于科研通互助平台的介绍 1062203