Multi-channel Optimization Generative Model for Stable Ultra-Sparse-View CT Reconstruction

一致性(知识库) 迭代重建 推论 数据一致性 计算机科学 人工智能 基本事实 理论(学习稳定性) 生成模型 数学优化 频道(广播) 过程(计算) 算法 机器学习 数学 生成语法 操作系统 计算机网络
作者
Wei‐Wen Wu,Jiayi Pan,Yanyang Wang,Shaoyu Wang,Jianjia Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (10): 3461-3475 被引量:19
标识
DOI:10.1109/tmi.2024.3376414
摘要

Score-based generative model (SGM) has risen to prominence in sparse-view CT reconstruction due to its impressive generation capability. The consistency of data is crucial in guiding the reconstruction process in SGM-based reconstruction methods. However, the existing data consistency policy exhibits certain limitations. Firstly, it employs partial data from the reconstructed image of iteration process for image updates, which leads to secondary artifacts with compromising image quality. Moreover, the updates to the SGM and data consistency are considered as distinct stages, disregarding their interdependent relationship. Additionally, the reference image used to compute gradients in the reconstruction process is derived from intermediate result rather than ground truth. Motivated by the fact that a typical SGM yields distinct outcomes with different random noise inputs, we propose a Multi-channel Optimization Generative Model (MOGM) for stable ultra-sparse-view CT reconstruction by integrating a novel data consistency term into the stochastic differential equation model. Notably, the unique aspect of this data consistency component is its exclusive reliance on original data for effectively confining generation outcomes. Furthermore, we pioneer an inference strategy that traces back from the current iteration result to ground truth, enhancing reconstruction stability through foundational theoretical support. We also establish a multi-channel optimization reconstruction framework, where conventional iterative techniques are employed to seek the reconstruction solution. Quantitative and qualitative assessments on 23 views datasets from numerical simulation, clinical cardiac and sheep's lung underscore the superiority of MOGM over alternative methods. Reconstructing from just 10 and 7 views, our method consistently demonstrates exceptional performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小不溜发布了新的文献求助10
刚刚
maoamo2024发布了新的文献求助10
刚刚
cdercder应助美味肉蟹煲采纳,获得10
1秒前
上官从菡发布了新的文献求助10
1秒前
柯语雪完成签到 ,获得积分10
1秒前
2秒前
4秒前
无花果应助ZZZ采纳,获得10
5秒前
大个应助干炸小黄鱼采纳,获得10
8秒前
9秒前
辰辰发布了新的文献求助10
9秒前
小蘑菇应助跳跃尔蓝采纳,获得50
10秒前
我姓孙完成签到,获得积分20
10秒前
小不溜完成签到,获得积分10
11秒前
如初给如初的求助进行了留言
11秒前
11秒前
13秒前
vvcat发布了新的文献求助10
13秒前
efine完成签到,获得积分10
14秒前
我姓孙发布了新的文献求助20
14秒前
15秒前
kk完成签到,获得积分10
15秒前
ztt1221完成签到,获得积分10
15秒前
安安完成签到 ,获得积分10
15秒前
美味肉蟹煲完成签到,获得积分20
15秒前
背后的小白菜完成签到,获得积分10
16秒前
琉璃苣发布了新的文献求助10
17秒前
18秒前
森sen完成签到 ,获得积分10
18秒前
刘亦平大美女应助anti采纳,获得10
18秒前
shouyu29完成签到,获得积分0
18秒前
sunc发布了新的文献求助10
20秒前
星辰大海应助zhying55采纳,获得10
20秒前
liz完成签到,获得积分10
21秒前
饱满的海秋完成签到,获得积分10
21秒前
23秒前
辰辰完成签到,获得积分20
23秒前
肥逗完成签到 ,获得积分10
23秒前
24秒前
美好蜻蜓完成签到 ,获得积分10
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841896
求助须知:如何正确求助?哪些是违规求助? 3383900
关于积分的说明 10531898
捐赠科研通 3104154
什么是DOI,文献DOI怎么找? 1709514
邀请新用户注册赠送积分活动 823302
科研通“疑难数据库(出版商)”最低求助积分说明 773878