Fast and efficient in-situ construction of low crystalline PEDOT-intercalated V2O5 nanosheets for high-performance zinc-ion battery

佩多:嘘 材料科学 原位 电池(电) 离子 化学工程 纳米技术 无机化学 化学 冶金 功率(物理) 工程类 有机化学 图层(电子) 物理 量子力学
作者
Yuexin Liu,Tongde Wang,Yongbing Sun,Mingcheng Zhang,Guohua Gao,Jinhu Yang,Kefeng Cai
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:484: 149501-149501
标识
DOI:10.1016/j.cej.2024.149501
摘要

Layered vanadium oxides have recently emerged as ideal cathode materials for aqueous zinc-ion batteries (ZIBs) due to their high theoretical capacity and low cost. However, their inherent shortages of narrow interlayer distance and poor electric conductivity cause sluggish reaction kinetics and low structure stability, leading to battery performance deterioration. Herein, we developed a novel strategy to simultaneously realize the intercalation of conductive polymer into V2O5 polyhedrons and exfoliation of the V2O5 into ultrathin nanosheets. The strategy is realized by in-situ polymerization of 3,4-ethylene-dioxythiophene (EDOT) monomers in the interlayer of the V2O5 polyhedrons that were derived from the annealing of vanadium-based metal–organic frameworks (MIL-100(V)) in air. The MIL-100-derived V2O5 polyhedrons assembled into porous microspheres (PVO) with abundant porosity and small particle size, which facilitates the penetration of EDOT molecules into the interior of the PVO during in-situ intercalation and polymerization processes, ultimately leading to the V2O5 polyhedrons exfoliating into ultrathin nanosheets. The uniform poly(3,4-ethylene-dioxythiophene) (PEDOT) layer and abundant oxygen vacancies in PVO@PEDOT nanosheets can accelerate the diffusion of electrons and zinc ions, which are evidenced by dynamic analysis, ex-situ characterizations, and density functional theory (DFT) calculations, revealing the synergetic effect of PEDOT and oxygen vacancies. Therefore, the PVO@PEDOT cathode exhibits high specific capacity (403.7 mAh g-1 at 0.2 A g-1), superior rate capability (312.8 mAh g-1 at 10 A g-1), and long-term stability (92.8% of the initial capacity remained after 3000 cycles), which is superior to the majority of ion intercalation improved V2O5.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
远睌完成签到 ,获得积分10
1秒前
3秒前
加减乘除发布了新的文献求助10
5秒前
华仔应助yjpppppp采纳,获得10
5秒前
受伤翠容完成签到,获得积分10
5秒前
曹文鹏完成签到,获得积分10
6秒前
7秒前
桐桐应助Xiaoli_Guo采纳,获得10
7秒前
科研Cat发布了新的文献求助10
8秒前
Yang完成签到,获得积分20
8秒前
看文献的狗完成签到,获得积分10
8秒前
汉堡包应助噜噜啦采纳,获得10
9秒前
TH发布了新的文献求助10
10秒前
忐忑的远山应助阿军采纳,获得10
11秒前
12秒前
2113完成签到,获得积分10
12秒前
wanci应助科研Cat采纳,获得10
14秒前
林宥嘉应助gnr2000采纳,获得10
15秒前
15秒前
端庄易真完成签到,获得积分20
16秒前
张泽崇应助gnr2000采纳,获得10
17秒前
yjpppppp发布了新的文献求助10
19秒前
20秒前
chensiqi完成签到,获得积分10
21秒前
我爱电催化完成签到,获得积分10
23秒前
yhy发布了新的文献求助10
24秒前
直率的乐萱完成签到 ,获得积分10
24秒前
林宥嘉应助坦率的寄灵采纳,获得10
24秒前
24秒前
温柔的擎完成签到,获得积分10
24秒前
小丛雨完成签到,获得积分10
25秒前
王炎完成签到 ,获得积分10
26秒前
dada完成签到,获得积分10
27秒前
28秒前
嘻嘻桃完成签到,获得积分10
29秒前
29秒前
yjpppppp完成签到,获得积分20
29秒前
29秒前
fukesi完成签到,获得积分10
30秒前
小m完成签到,获得积分10
31秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Mechanical Methods of the Activation of Chemical Processes 510
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2420495
求助须知:如何正确求助?哪些是违规求助? 2110887
关于积分的说明 5341608
捐赠科研通 1838148
什么是DOI,文献DOI怎么找? 915268
版权声明 561142
科研通“疑难数据库(出版商)”最低求助积分说明 489400