Privacy-preserving small target defect detection of heat sink based on DeceFL and DSUNet

计算机科学 可解释性 卷积神经网络 地点 人工智能 数据挖掘 深度学习 变压器 机器学习 工程类 哲学 语言学 电压 电气工程
作者
Feng Guo,Yong Zhang,Rukai Lan,Shaolin Ran,Liang Yaning
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:575: 127276-127276 被引量:1
标识
DOI:10.1016/j.neucom.2024.127276
摘要

Surface defect detection is directly related to the quality of products and crucial for industrial production. Currently, convolutional neural network (CNN)-based structures have been widely used for surface defect detection. However, the locality restriction of convolutional operation poses challenges for surface defect detection, particularly when it comes to detecting small target defects. In addition, there is a risk of leakage during data communication arising from participant attacks. To address the above issues, the Dilated Swin Transformer UNet (DSUNet) model with privacy protection is proposed in this paper. Firstly, the DSUNet model adapting a hybrid CNN-Transformer architecture is designed to effectively address the challenge of detecting small defects, which can capture global and remote semantic information. Secondly, a decentralized federated learning framework (DeceFL) is introduced to protect data privacy. Finally, in order to enhance the interpretability of the model, the regional focus of the defect detection network is visualized through the Grad-CAM method. Comprehensive experiments on the heat sink surface defect dataset are conducted to demonstrate the effectiveness of our proposed model in the field of surface defect detection. The DSUNet achieves an accuracy of 97.98% on the dataset of heat sink surface defect, outperforming the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助Eric采纳,获得10
1秒前
1秒前
谦也完成签到,获得积分10
1秒前
南宫傻姑完成签到,获得积分20
2秒前
Jh发布了新的文献求助10
3秒前
3秒前
研友_VZG7GZ应助羊羊羊采纳,获得10
4秒前
义气代梅发布了新的文献求助10
4秒前
zmm发布了新的文献求助10
4秒前
许许完成签到,获得积分10
4秒前
6秒前
WYang完成签到,获得积分10
6秒前
感动城发布了新的文献求助10
7秒前
呆萌冰彤完成签到 ,获得积分10
8秒前
xiaobai发布了新的文献求助10
8秒前
背后曼雁发布了新的文献求助10
9秒前
一杯清茶发布了新的文献求助10
9秒前
9秒前
10秒前
粒粒发布了新的文献求助10
10秒前
10秒前
搜集达人应助Zero采纳,获得10
10秒前
12秒前
ZZ关注了科研通微信公众号
12秒前
13秒前
13秒前
14秒前
16秒前
科研通AI5应助Caism采纳,获得10
16秒前
孙酸红发布了新的文献求助10
16秒前
1111111发布了新的文献求助10
17秒前
慕巧荷完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助20
17秒前
偷懒一号完成签到,获得积分10
18秒前
紫金之恋发布了新的文献求助10
18秒前
852应助yu采纳,获得10
19秒前
19秒前
21秒前
22秒前
冷月发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4265357
求助须知:如何正确求助?哪些是违规求助? 3797807
关于积分的说明 11905051
捐赠科研通 3443974
什么是DOI,文献DOI怎么找? 1889715
邀请新用户注册赠送积分活动 940651
科研通“疑难数据库(出版商)”最低求助积分说明 845019