A comparison of deep learning segmentation models for synchrotron radiation based tomograms of biodegradable bone implants

分割 断层摄影术 同步辐射 人工智能 计算机科学 材料科学 医学 光学 放射科 物理
作者
André Marinho,Bashir Kazimi,Hanna Ćwieka,Romy Marek,Felix Beckmann,Regine Willumeit‐Römer,Julian Moosmann,Berit Zeller‐Plumhoff
出处
期刊:Frontiers in Physics [Frontiers Media]
卷期号:12 被引量:5
标识
DOI:10.3389/fphy.2024.1257512
摘要

Introduction: Synchrotron radiation micro-computed tomography (SRμCT) has been used as a non-invasive technique to examine the microstructure and tissue integration of biodegradable bone implants. To be able to characterize parameters regarding the disintegration and osseointegration of such materials quantitatively, the three-dimensional (3D) image data provided by SRμCT needs to be processed by means of semantic segmentation. However, accurate image segmentation is challenging using traditional automated techniques. This study investigates the effectiveness of deep learning approaches for semantic segmentation of SRμCT volumes of Mg-based implants in sheep bone ex vivo. Methodology: For this purpose different convolutional neural networks (CNNs), including U-Net, HR-Net, U²-Net, from the TomoSeg framework, the Scaled U-Net framework, and 2D/3D U-Net from the nnU-Net framework were trained and validated. The image data used in this work was part of a previous study where biodegradable screws were surgically implanted in sheep tibiae and imaged using SRμCT after different healing periods. The comparative analysis of CNN models considers their performance in semantic segmentation and subsequent calculation of degradation and osseointegration parameters. The models’ performance is evaluated using the intersection over union (IoU) metric, and their generalization ability is tested on unseen datasets. Results and discussion: This work shows that the 2D nnU-Net achieves better generalization performance, with the degradation layer being the most challenging label to segment for all models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aka鱼鱼鱼完成签到,获得积分10
3秒前
Lucas应助诚心的啤酒采纳,获得10
3秒前
层次感发布了新的文献求助10
4秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
层次感完成签到,获得积分20
12秒前
14秒前
Hello应助basaker采纳,获得10
14秒前
言念君子发布了新的文献求助10
14秒前
16秒前
M123456完成签到,获得积分20
18秒前
ll发布了新的文献求助30
18秒前
19秒前
20秒前
彬琪发布了新的文献求助10
21秒前
希望天下0贩的0应助CChi0923采纳,获得10
22秒前
23秒前
25秒前
烟花应助zzz采纳,获得10
27秒前
绝望核弹完成签到 ,获得积分10
30秒前
31秒前
只影有你完成签到,获得积分10
31秒前
XLee完成签到,获得积分10
34秒前
室内设计完成签到,获得积分10
35秒前
今昔完成签到,获得积分10
36秒前
丰富的河马完成签到,获得积分20
37秒前
陌上花开发布了新的文献求助10
37秒前
llly发布了新的文献求助10
38秒前
斯文败类应助瘦瘦的斑马采纳,获得10
38秒前
苍禾应助和谐的梦蕊采纳,获得10
40秒前
苍禾应助和谐的梦蕊采纳,获得10
40秒前
41秒前
47秒前
47秒前
李爱国应助陌上花开采纳,获得10
47秒前
量子星尘发布了新的文献求助10
48秒前
Kirito应助淡定的鸭子采纳,获得30
48秒前
羊白玉完成签到 ,获得积分10
49秒前
swh发布了新的文献求助10
50秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4041376
求助须知:如何正确求助?哪些是违规求助? 3578792
关于积分的说明 11380827
捐赠科研通 3307693
什么是DOI,文献DOI怎么找? 1820078
邀请新用户注册赠送积分活动 893216
科研通“疑难数据库(出版商)”最低求助积分说明 815408