Transfer learning improves pMHC kinetic stability and immunogenicity predictions

免疫原性 计算机科学 主要组织相容性复合体 理论(学习稳定性) 学习迁移 MHC I级 计算生物学 人工智能 化学 免疫系统 机器学习 生物 免疫学 生物化学
作者
Romanos Fasoulis,Maurício Rigo,Dinler A. Antunes,Γεώργιος Παλιούρας,Lydia E. Kavraki
出处
期刊:ImmunoInformatics 卷期号:13: 100030-100030 被引量:3
标识
DOI:10.1016/j.immuno.2023.100030
摘要

The cellular immune response comprises several processes, with the most notable ones being the binding of the peptide to the Major Histocompability Complex (MHC), the peptide-MHC (pMHC) presentation to the surface of the cell, and the recognition of the pMHC by the T-Cell Receptor. Identifying the most potent peptide targets for MHC binding, presentation and T-cell recognition is vital for developing peptide-based vaccines and T-cell-based immunotherapies. Data-driven tools that predict each of these steps have been developed, and the availability of mass spectrometry (MS) datasets has facilitated the development of accurate Machine Learning (ML) methods for class-I pMHC binding prediction. However, the accuracy of ML-based tools for pMHC kinetic stability prediction and peptide immunogenicity prediction is uncertain, as stability and immunogenicity datasets are not abundant. Here, we use transfer learning techniques to improve stability and immunogenicity predictions, by taking advantage of a large number of binding affinity and MS datasets. The resulting models, TLStab and TLImm, exhibit comparable or better performance than state-of-the-art approaches on different stability and immunogenicity test sets respectively. Our approach demonstrates the promise of learning from the task of peptide binding to improve predictions on downstream tasks. The source code of TLStab and TLImm is publicly available at https://github.com/anon528/potential-octo-disco.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助afterly采纳,获得10
1秒前
隐形曼青应助坚强馒头采纳,获得10
1秒前
echasl73发布了新的文献求助10
1秒前
1秒前
江峰发布了新的文献求助10
1秒前
鹅小小完成签到,获得积分10
1秒前
1秒前
万木春完成签到 ,获得积分10
2秒前
Yeshenyue完成签到,获得积分10
2秒前
龚俊发布了新的文献求助10
2秒前
南吕十八完成签到,获得积分10
3秒前
左手的左手是左手完成签到,获得积分10
3秒前
3秒前
共享精神应助yifou1110采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
科研小达子完成签到,获得积分10
4秒前
5秒前
CipherSage应助小雅采纳,获得10
5秒前
5秒前
唐荣完成签到,获得积分10
6秒前
自由的从梦完成签到,获得积分10
6秒前
无与伦比发布了新的文献求助10
6秒前
6秒前
axin完成签到,获得积分20
6秒前
丘比特应助jun采纳,获得10
6秒前
涟漪发布了新的文献求助10
6秒前
6秒前
科研肥料发布了新的文献求助10
6秒前
7秒前
7秒前
hqn发布了新的文献求助10
7秒前
hfy发布了新的文献求助10
8秒前
Ava应助WN采纳,获得10
8秒前
8秒前
8秒前
陈逸恒发布了新的文献求助10
8秒前
9秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792875
求助须知:如何正确求助?哪些是违规求助? 3337413
关于积分的说明 10285064
捐赠科研通 3054136
什么是DOI,文献DOI怎么找? 1675825
邀请新用户注册赠送积分活动 803795
科研通“疑难数据库(出版商)”最低求助积分说明 761561