Large-scale continual learning for ancient Chinese character recognition

计算机科学 人工智能 稳健性(进化) 原始数据 特征(语言学) 提取器 机器学习 比例(比率) 性格(数学) 特征提取 模式识别(心理学) 数学 工程类 生物化学 化学 语言学 哲学 物理 几何学 量子力学 工艺工程 基因 程序设计语言
作者
Yue Xu,Xu-Yao Zhang,Zhaoxiang Zhang,Cheng‐Lin Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:150: 110283-110283 被引量:4
标识
DOI:10.1016/j.patcog.2024.110283
摘要

Ancient Chinese character recognition is a challenging problem in the field of pattern recognition. It is difficult to collect all character classes during the training stage due to the numerous classes of ancient Chinese characters and the likelihood of discovering new characters over time. A solution to address this problem is continual learning. However, most continual learning methods are not well-suited for large-scale applications, making them insufficient for solving the problem of ancient Chinese character recognition. Although saving raw data for old classes is a good approach for continual learning to address large-scale problems, it is often infeasible due to the lack of data accessibility in reality. To solve these problems, we propose a large-scale continual learning framework based on the convolutional prototype network (CPN), which does not save raw data for old classes. In this paper, several basic strategies have been proposed for the initial training stage to enhance the feature extraction ability and robustness of the network, which can improve the performance of the model in continual learning. In addition, we propose two practical methods in varying feature space (parameters of feature extractor are changeable) and fixed feature space (parameters of feature extractor are fixed), which enable the model to carry out large-scale continual learning. The proposed method does not save the raw data of old classes and enables simultaneous classification of all existing classes without knowing the incremental batch number. Experiments on the CASIA-AHCDB dataset with 5000 character classes demonstrate the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xzy998发布了新的文献求助10
1秒前
Lucy完成签到,获得积分10
1秒前
一切都会好起来的完成签到,获得积分10
2秒前
科研通AI5应助zhiwei采纳,获得10
2秒前
小宇宙完成签到 ,获得积分10
3秒前
搞怪人杰发布了新的文献求助10
3秒前
lutra发布了新的文献求助10
4秒前
dasfdufos发布了新的文献求助10
5秒前
axin发布了新的文献求助10
6秒前
6秒前
zz完成签到,获得积分10
6秒前
7秒前
葱油饼完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
dasfdufos完成签到,获得积分10
11秒前
ZX0501完成签到,获得积分10
11秒前
科研通AI5应助刘芸芸采纳,获得10
11秒前
Sene发布了新的文献求助10
12秒前
yoyo20012623完成签到,获得积分10
12秒前
meilongyong发布了新的文献求助10
13秒前
暖冬的向日葵完成签到,获得积分10
13秒前
赘婿应助mmr采纳,获得10
14秒前
幽默海白完成签到 ,获得积分10
14秒前
14秒前
缪风华发布了新的文献求助10
15秒前
橘子海完成签到 ,获得积分10
15秒前
tjfwg完成签到,获得积分10
15秒前
muzi完成签到,获得积分10
15秒前
16秒前
有魅力的从凝完成签到,获得积分10
18秒前
隐形曼青应助CY采纳,获得10
18秒前
白沙湾发布了新的文献求助10
18秒前
why完成签到,获得积分10
18秒前
称心采枫完成签到 ,获得积分10
18秒前
21秒前
黄石完成签到,获得积分10
21秒前
22秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801141
求助须知:如何正确求助?哪些是违规求助? 3346790
关于积分的说明 10330402
捐赠科研通 3063155
什么是DOI,文献DOI怎么找? 1681388
邀请新用户注册赠送积分活动 807549
科研通“疑难数据库(出版商)”最低求助积分说明 763728