A Novel Neural Network for Joint Lesion Segmentation and Confidence Score Generation from PET Image

分割 计算机科学 人工智能 置信区间 模式识别(心理学) 图像分割 鉴别器 人工神经网络 尺度空间分割 计算机视觉 数学 统计 探测器 电信
作者
Melika Daraee,Elham Saeedzadeh,Pardis Ghaffarian,Hossein Arabi
标识
DOI:10.1109/nss/mic44845.2022.10399124
摘要

Lesions segmentation from PET images is considered very high challenging task compared to the anatomical organ delineation regarding irregular and/or unpredictable shape/morphology of lesions. Moreover, lesion segmentation from PET images alone would add to the complexity of the problem owing to the poor spatial resolution and high levels of noise. Thus, dedicated/optimized segmentation models should be developed for identification and delineation of malignant lesions from PET images. To this end, this work set out to propose a novel solution for this challenge. Moreover, the focus of this study is to introduce an automated model assigning a confidence score to the resulting segmentation in order to indicate to what extend specialists could trust the outcomes. This would greatly reduce the workload and gross errors in clinical practice. To this end, a GAN network was developed in which a discriminator repeatedly evaluates the accuracy of the estimated lesion segmentation. This module is trained to identify the accurate estimations. This module sends feedback to the primary segmentation network to improve the overall segmentation accuracy as well as providing a confidence score which indicates the accuracy of the final segmentation. Regarding the quantitative analysis of the proposed network, the incorporation of the confidence score estimator improved the segmentation accuracy of the model from 85.9 % (without) to 86.8% (with the confidence module). Moreover, the confidence module enabled to estimate the accuracy of the resulting segmentation with a mean absolute error (MAE) of 0.084 compared to the original model with MAE of 0.159. The proposed confidence score estimator would minimize the incidence of gross errors in clinical practice as well as reducing the workload for verification of the resulting segmentations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小白完成签到,获得积分10
1秒前
饼子完成签到 ,获得积分10
2秒前
单耳元完成签到,获得积分20
3秒前
4秒前
蓝色发布了新的文献求助10
4秒前
5秒前
乔心发布了新的文献求助10
9秒前
紧张的友灵完成签到 ,获得积分10
9秒前
9秒前
豆子完成签到,获得积分10
10秒前
科研通AI5应助甜甜戎采纳,获得10
10秒前
晨曦发布了新的文献求助30
11秒前
11秒前
14秒前
gyd发布了新的文献求助10
15秒前
滴滴滴发布了新的文献求助10
16秒前
Quratulain发布了新的文献求助30
16秒前
顺其自然_666888完成签到,获得积分10
17秒前
单耳元发布了新的文献求助10
19秒前
大劲发布了新的文献求助10
21秒前
gyd完成签到,获得积分20
24秒前
25秒前
豆子完成签到,获得积分10
25秒前
谨ko完成签到 ,获得积分10
30秒前
Ava应助王雪采纳,获得10
30秒前
30秒前
30秒前
RDK发布了新的文献求助10
31秒前
研友_VZG7GZ应助燕子采纳,获得10
31秒前
火星上的亦寒完成签到 ,获得积分10
33秒前
Akim应助笑点低的盼山采纳,获得10
33秒前
大劲完成签到,获得积分10
33秒前
蓝色发布了新的文献求助10
35秒前
36秒前
英俊的铭应助科研通管家采纳,获得10
36秒前
36秒前
爆米花应助科研通管家采纳,获得10
36秒前
36秒前
丘比特应助科研通管家采纳,获得10
36秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799095
求助须知:如何正确求助?哪些是违规求助? 3344848
关于积分的说明 10321650
捐赠科研通 3061268
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806904
科研通“疑难数据库(出版商)”最低求助积分说明 763445