Estimation of aboveground biomass of different vegetation types in mangrove forests based on UAV remote sensing

红树林 生物量(生态学) 植被(病理学) 环境科学 遥感 估计 林业 地理 生态学 工程类 生物 医学 系统工程 病理
作者
Shaorui Li,Zhenchang Zhu,Weitang Deng,Qin Zhu,Zhihao Xu,Bo Peng,Fen Guo,Yuan Zhang,Zhifeng Yang
出处
期刊:Sustainable horizons [Elsevier]
卷期号:11: 100100-100100 被引量:4
标识
DOI:10.1016/j.horiz.2024.100100
摘要

Accurate estimating biomass is essential for monitoring mangrove dynamics and quantifying its carbon stocks. Utilizing Unmanned Aerial Vehicle (UAV) monitoring to replace manual surveys for biomass estimation offers advantages such as broad coverage and rapid data collection. However, uncertainty exists in selecting appropriate UAV inversion parameters. Meanwhile, accurate biomass estimation of mangrove is challenging as its low penetration, especially the difficult for distinguishing between different mangrove vegetation types. In this study, we combined UAV and Light Detection and Ranging (LiDAR) to accurately estimate the biomass of different mangrove vegetation types. Using the UAV-mounted LiDAR as a sampling tool, we obtain Three-Dimensional (3D) point cloud data of six dominant mangrove vegetation types in South China. Combining such data with field measurements, we analyzed the impact of different inversion parameters on biomass estimation accuracy of different mangrove vegetation types. The results demonstrated that the combination of average canopy height and average canopy effective cover generally yielded the highest accuracy for estimating mangrove biomass. Moreover, refinement of biomass estimation for different mangrove vegetation types with curve fits further improved accuracy. The current work provides an effective tool to accurately quantify the aboveground biomass of different mangrove vegetation at a range of scales. This carries significant implications for assessing its distribution status and characterizing its functions such as carbon sequestration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴天完成签到,获得积分10
1秒前
lanxingxie完成签到,获得积分10
1秒前
可爱的函函应助123456采纳,获得10
1秒前
wyx发布了新的文献求助10
1秒前
现实的鹏飞关注了科研通微信公众号
1秒前
烟花应助橡皮鸭队长采纳,获得10
2秒前
慕青应助星睿采纳,获得10
2秒前
CLIFF发布了新的文献求助10
2秒前
3秒前
888完成签到,获得积分20
4秒前
天天快乐应助奋斗土豆采纳,获得10
4秒前
ZK完成签到,获得积分10
4秒前
6秒前
文献期待完成签到,获得积分10
6秒前
科研通AI6应助hahajiang采纳,获得30
8秒前
研友_VZG7GZ应助柠栀采纳,获得10
8秒前
8秒前
自由思枫发布了新的文献求助30
8秒前
jjb发布了新的文献求助10
8秒前
YYY完成签到,获得积分10
9秒前
9秒前
10秒前
Weson发布了新的文献求助10
11秒前
Lizeth完成签到,获得积分10
12秒前
12秒前
是人我吃发布了新的文献求助10
13秒前
kek完成签到 ,获得积分10
13秒前
星睿完成签到,获得积分10
14秒前
14秒前
朝阳关注了科研通微信公众号
14秒前
Yu完成签到,获得积分10
15秒前
123456发布了新的文献求助10
15秒前
Ysp发布了新的文献求助10
16秒前
Rui_Rui应助YangMengting采纳,获得10
16秒前
务实的谷秋关注了科研通微信公众号
17秒前
17秒前
Aaron_Chia发布了新的文献求助10
18秒前
星睿发布了新的文献求助10
18秒前
Metrol_Wang发布了新的文献求助10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493