Milk Quality Prediction Using Machine Learning

巴氏杀菌 生牛奶 食品安全 质量(理念) 业务 食品科学 生物技术 生物 哲学 认识论
作者
Drashti Bhavsar,Yash Jobanputra,Nirmal Keshari Swain,Debabrata Swain
出处
期刊:EAI endorsed transactions on internet of things [European Alliance for Innovation]
卷期号:10 被引量:6
标识
DOI:10.4108/eetiot.4501
摘要

Milk is the main dietary supply for every individual. High-quality milk shouldn't contain any adulterants. Dairy products are sold everywhere in society. Yet, the local milk vendors use a wide range of adulterants in their products, permanently altering the evaporated. Using milk that has gone bad can have serious health consequences. On October 18 of this year, the Food Safety and Standards Authority of India (FSSAI), the nation's top food safety authority, released the final result of the National Milk Safety and Quality Survey (NMSQS) and declared the milk readily available in India to be "mostly safe." According to an FSSAI survey, 68.4% of the milk in India is tainted. The quality of milk cannot be checked by any equipment or special system. Milk that has not been pasteurized has not been treated to get rid of harmful bacteria. Infected raw milk may contain Salmonella, Campylobacter, Cryptosporidium, E. coli, Listeria, Brucella, and other dangerous pathogens. These microorganisms pose a major risk to your family's health. Manually analyzing the various milk constituents can be very challenging when determining the quality of the milk. Analyzing and discovering with the aid of machine learning can help with this endeavor. Here a machine learning-based milk quality prediction system is developed. The proposed technology has shown 99.99% classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助赏你半斤地瓜烧采纳,获得10
1秒前
wenze发布了新的文献求助20
1秒前
1秒前
lxiaok完成签到,获得积分10
1秒前
pu完成签到 ,获得积分10
2秒前
文献完成签到,获得积分20
3秒前
3秒前
李健的粉丝团团长应助ZRQ采纳,获得10
3秒前
个性的饼干完成签到,获得积分10
3秒前
小凯同学发布了新的文献求助10
3秒前
苗条白枫发布了新的文献求助10
4秒前
CodeCraft应助GWT采纳,获得10
4秒前
4秒前
4秒前
深情安青应助韩羽丰采纳,获得10
5秒前
5秒前
文献发布了新的文献求助10
5秒前
明亮的若南完成签到 ,获得积分10
6秒前
无语啦完成签到,获得积分10
6秒前
6秒前
yoho完成签到,获得积分10
6秒前
linhuiyin发布了新的文献求助10
6秒前
无花果应助Cooby采纳,获得10
7秒前
7秒前
烂漫香水完成签到 ,获得积分10
7秒前
科研通AI2S应助飘逸的海云采纳,获得10
8秒前
子车茗应助一颗椰子糖耶采纳,获得20
8秒前
8秒前
8秒前
8秒前
9秒前
Timing发布了新的文献求助10
9秒前
9秒前
10秒前
羊笨笨完成签到,获得积分10
10秒前
碧蓝亦玉完成签到,获得积分10
10秒前
11秒前
12秒前
懒大王发布了新的文献求助30
12秒前
猫猫熊发布了新的文献求助10
12秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
Microfluidic Cell Culture Systems 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805810
求助须知:如何正确求助?哪些是违规求助? 3350734
关于积分的说明 10350610
捐赠科研通 3066591
什么是DOI,文献DOI怎么找? 1683999
邀请新用户注册赠送积分活动 809197
科研通“疑难数据库(出版商)”最低求助积分说明 765407