Enhancing VRUs Safety Through Mobility-Aware Workload Orchestration with Trajectory Prediction using Reinforcement Learning

工作量 强化学习 弹道 编配 计算机科学 人工智能 操作系统 天文 物理 艺术 视觉艺术 音乐剧
作者
Zahra Safavifar,Charafeddine Mechalikh,Junfei Xie,Fatemeh Golpayegani
标识
DOI:10.1109/itsc57777.2023.10421846
摘要

Vulnerable road users (VRUs) such as pedestrians, cyclists, motorcyclists, and animals are at the highest risk in the road traffic environment since they move in the environment without any protection. Various applications and architectures that are applicable to Intelligence Transportation Systems (ITS) must be designed by considering this regard. Task offloading is a well-known approach in various ITS applications. Task offloading in edge computing refers to the process of transferring certain computing tasks or workloads from a local device to edge nodes or servers located closer to the device. Orchestrating workload in an environment where both the task generator and destination device can be mobile is challenging while it is crucial for VRUs' safety. For example, when a user of a blind navigation assistant offloads a task, the success of that task is extremely important. Failure could potentially cause harm or negative consequences. This paper proposes a mobility-aware workload orchestration model for VRUs safety applications. To guarantee a high success rate and reduce the risk of task failure due to mobility, this model uses reinforcement learning to adapt to the dynamic edge environment. This model also employs a heuristic algorithm for device trajectory prediction from basic device location data. In addition, a novel technique is developed for task transferring to avoid task failure of mobile resources. The results show the proposed model outperforms in increasing the task success rate and decreasing the task failure rate due to mobility compared to the baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱听歌的乐巧完成签到,获得积分10
1秒前
Ana完成签到,获得积分10
1秒前
优美怀蕊发布了新的文献求助10
2秒前
无花果应助Kevin采纳,获得10
4秒前
4秒前
5秒前
心灵美的大山完成签到,获得积分10
5秒前
墨墨完成签到 ,获得积分10
5秒前
ZHANG123完成签到,获得积分10
5秒前
冷咖啡离开了杯垫完成签到,获得积分10
6秒前
6秒前
xiaoloong发布了新的文献求助10
6秒前
Mola发布了新的文献求助10
7秒前
Tian_lanlan发布了新的文献求助10
9秒前
Hello应助chenwang采纳,获得20
9秒前
10秒前
10秒前
优美怀蕊完成签到,获得积分10
10秒前
xiaoloong完成签到,获得积分10
11秒前
Derek0203发布了新的文献求助10
11秒前
七七发布了新的文献求助10
11秒前
灵剑山完成签到 ,获得积分10
12秒前
李爱国应助温婉采纳,获得10
12秒前
13秒前
阿婷婷婷完成签到 ,获得积分10
13秒前
13秒前
脑洞疼应助心灵美的大山采纳,获得10
14秒前
Kevin发布了新的文献求助10
15秒前
15秒前
37完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
Derek0203完成签到,获得积分10
17秒前
QQ关闭了QQ文献求助
17秒前
15919229415完成签到,获得积分10
17秒前
王花花完成签到,获得积分10
18秒前
小八姑娘发布了新的文献求助30
18秒前
研酒生完成签到,获得积分10
18秒前
思源应助科研老采纳,获得10
18秒前
Jeamren完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5259353
求助须知:如何正确求助?哪些是违规求助? 4421049
关于积分的说明 13761672
捐赠科研通 4294788
什么是DOI,文献DOI怎么找? 2356585
邀请新用户注册赠送积分活动 1352976
关于科研通互助平台的介绍 1313938