Dual Branch Multi-Level Semantic Learning for Few-Shot Segmentation

计算机科学 人工智能 帕斯卡(单位) 分割 班级(哲学) 概化理论 模式识别(心理学) 机器学习 数学 统计 程序设计语言
作者
Yadang Chen,Ren Jiang,Yuhui Zheng,Bin Sheng,Zhi-Xin Yang,Enhua Wu
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 1432-1447 被引量:15
标识
DOI:10.1109/tip.2024.3364056
摘要

Few-shot semantic segmentation aims to segment novel-class objects in a query image with only a few annotated examples in support images. Although progress has been made recently by combining prototype-based metric learning, existing methods still face two main challenges. First, various intra-class objects between the support and query images or semantically similar inter-class objects can seriously harm the segmentation performance due to their poor feature representations. Second, the latent novel classes are treated as the background in most methods, leading to a learning bias, whereby these novel classes are difficult to correctly segment as foreground. To solve these problems, we propose a dual-branch learning method. The class-specific branch encourages representations of objects to be more distinguishable by increasing the inter-class distance while decreasing the intra-class distance. In parallel, the class-agnostic branch focuses on minimizing the foreground class feature distribution and maximizing the features between the foreground and background, thus increasing the generalizability to novel classes in the test stage. Furthermore, to obtain more representative features, pixel-level and prototype-level semantic learning are both involved in the two branches. The method is evaluated on PASCAL-5 i 1-shot, PASCAL-5 i 5-shot, COCO-20 i 1-shot, and COCO-20 i 5-shot, and extensive experiments show that our approach is effective for few-shot semantic segmentation despite its simplicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高高应助Broadway Zhang采纳,获得10
1秒前
Rocky完成签到 ,获得积分10
1秒前
机灵柚子应助zhan采纳,获得20
1秒前
3秒前
3秒前
5秒前
章千万完成签到,获得积分10
5秒前
5秒前
5秒前
胡胡胡完成签到 ,获得积分10
5秒前
6秒前
6秒前
KGZW发布了新的文献求助10
6秒前
吗喽完成签到,获得积分20
6秒前
Lin完成签到 ,获得积分10
6秒前
星辰大海应助winux007采纳,获得10
7秒前
smm完成签到,获得积分10
7秒前
8秒前
布吉岛完成签到,获得积分10
8秒前
qqq完成签到,获得积分10
8秒前
8秒前
8秒前
士艳完成签到,获得积分10
8秒前
8秒前
吗喽发布了新的文献求助10
10秒前
拉长的蓝发布了新的文献求助10
10秒前
沉默寻凝发布了新的文献求助20
10秒前
菜鸟发布了新的文献求助10
10秒前
10秒前
ping完成签到 ,获得积分10
11秒前
11秒前
Kirito给愉快的雍的求助进行了留言
11秒前
沉默的半凡完成签到,获得积分10
12秒前
霜降发布了新的文献求助10
12秒前
等枫晚发布了新的文献求助10
13秒前
13秒前
KGZW完成签到,获得积分10
13秒前
13秒前
小二郎应助zhaopeipei采纳,获得10
13秒前
fwz完成签到,获得积分10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Genomic signature of non-random mating in human complex traits 2000
Semantics for Latin: An Introduction 1155
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4108343
求助须知:如何正确求助?哪些是违规求助? 3646445
关于积分的说明 11550471
捐赠科研通 3352436
什么是DOI,文献DOI怎么找? 1842066
邀请新用户注册赠送积分活动 908390
科研通“疑难数据库(出版商)”最低求助积分说明 825491