Data-driven machine learning approaches for predicting slump of fiber-reinforced concrete containing waste rubber and recycled aggregate

下跌 骨料(复合) 天然橡胶 混凝土坍落度试验 材料科学 纤维 复合材料 废物管理 工程类 水泥
作者
Avijit Pal,Khondaker Sakil Ahmed,Sujith Mangalathu
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:417: 135369-135369 被引量:14
标识
DOI:10.1016/j.conbuildmat.2024.135369
摘要

This research investigates the slump behavior of fiber-reinforced rubberized recycled aggregate concrete (FR3C) and its significance in the concrete industry. The fresh properties of FR3C are influenced by the variability of its constituents. The presence and proportions of waste rubber and fiber play crucial roles in the slump of fresh FR3C. Achieving the desired slump in FR3C is a critical challenge that relies on understanding the intricate internal relationships among its constituents. To address this challenge, a set of machine learning-based models is proposed to accurately predict the slump and uncover the internal dependencies within FR3C. The models are trained and tested using a comprehensive dataset comprising 464 experimental data points with varying mix proportions. Twelve machine learning models, including linear regression, ridge regression, lasso regression, support vector machine, k-nearest neighbors, decision tree, random forest, AdaBoost, Voting Regressor, Gradient Boost, CatBoost, and XGBoost, are employed in the analysis. The input characteristics considered in the models encompass nominal aggregate size, water-to-cement ratio (W/C), percentage of rubber, replacement level of recycled coarse aggregate (RCA), percentage of fiber and its type, use of plasticizer, and fly ash percentage. The results demonstrate that the XGBoost model outperforms the others in accurately predicting the slump of FR3C. It exhibits the highest coefficient of determination (R2), lowest root mean squared error (RMSE), and demonstrates strong performance on both training and testing data. The evaluation of feature importance emphasizes the critical influence of the W/C ratio, nominal aggregate size, and fiber percentage on the slump behavior of FR3C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hyp完成签到 ,获得积分10
1秒前
OsHTAS完成签到,获得积分10
2秒前
3秒前
青青完成签到 ,获得积分10
7秒前
清风悠笛完成签到,获得积分10
7秒前
研友_LMg3PZ完成签到,获得积分10
8秒前
科研肥料发布了新的文献求助10
8秒前
壁虎君完成签到,获得积分10
8秒前
WILD完成签到 ,获得积分10
9秒前
mayday完成签到,获得积分10
10秒前
alexlpb完成签到,获得积分0
11秒前
ATYS完成签到,获得积分10
12秒前
呜呜呜关注了科研通微信公众号
14秒前
祎薇完成签到 ,获得积分10
14秒前
微笑枫叶完成签到 ,获得积分10
16秒前
Liziqi823完成签到,获得积分10
16秒前
体贴的叛逆者完成签到,获得积分10
17秒前
Amazing完成签到 ,获得积分10
18秒前
Jieh完成签到,获得积分10
18秒前
百香果bxg完成签到 ,获得积分10
19秒前
寒冷寻桃完成签到 ,获得积分10
22秒前
yes完成签到 ,获得积分10
23秒前
24秒前
肉片牛帅帅完成签到,获得积分10
25秒前
Mtx3098520564完成签到 ,获得积分10
26秒前
sun完成签到,获得积分10
27秒前
KK完成签到 ,获得积分10
28秒前
29秒前
了0完成签到 ,获得积分10
32秒前
32秒前
菠萝吹雪完成签到,获得积分10
33秒前
小王同学完成签到 ,获得积分10
33秒前
呜呜呜发布了新的文献求助10
34秒前
panda完成签到,获得积分10
36秒前
白色梨花完成签到 ,获得积分10
36秒前
kangkang完成签到 ,获得积分10
37秒前
LJHUA完成签到,获得积分10
38秒前
看文献完成签到,获得积分0
40秒前
细心笑卉完成签到 ,获得积分10
40秒前
斯文败类应助梅雨季来信采纳,获得10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359404
关于积分的说明 10402536
捐赠科研通 3077257
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743