亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-driven machine learning approaches for predicting slump of fiber-reinforced concrete containing waste rubber and recycled aggregate

下跌 骨料(复合) 天然橡胶 混凝土坍落度试验 材料科学 纤维 复合材料 废物管理 工程类 水泥
作者
Avijit Pal,Khondaker Sakil Ahmed,Sujith Mangalathu
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:417: 135369-135369 被引量:27
标识
DOI:10.1016/j.conbuildmat.2024.135369
摘要

This research investigates the slump behavior of fiber-reinforced rubberized recycled aggregate concrete (FR3C) and its significance in the concrete industry. The fresh properties of FR3C are influenced by the variability of its constituents. The presence and proportions of waste rubber and fiber play crucial roles in the slump of fresh FR3C. Achieving the desired slump in FR3C is a critical challenge that relies on understanding the intricate internal relationships among its constituents. To address this challenge, a set of machine learning-based models is proposed to accurately predict the slump and uncover the internal dependencies within FR3C. The models are trained and tested using a comprehensive dataset comprising 464 experimental data points with varying mix proportions. Twelve machine learning models, including linear regression, ridge regression, lasso regression, support vector machine, k-nearest neighbors, decision tree, random forest, AdaBoost, Voting Regressor, Gradient Boost, CatBoost, and XGBoost, are employed in the analysis. The input characteristics considered in the models encompass nominal aggregate size, water-to-cement ratio (W/C), percentage of rubber, replacement level of recycled coarse aggregate (RCA), percentage of fiber and its type, use of plasticizer, and fly ash percentage. The results demonstrate that the XGBoost model outperforms the others in accurately predicting the slump of FR3C. It exhibits the highest coefficient of determination (R2), lowest root mean squared error (RMSE), and demonstrates strong performance on both training and testing data. The evaluation of feature importance emphasizes the critical influence of the W/C ratio, nominal aggregate size, and fiber percentage on the slump behavior of FR3C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
王王碎冰冰应助一周采纳,获得10
38秒前
leilei完成签到 ,获得积分10
42秒前
zh完成签到,获得积分10
47秒前
yl完成签到 ,获得积分10
51秒前
yf完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
曦耀发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
英俊的铭应助ceeray23采纳,获得20
2分钟前
QF2026关注了科研通微信公众号
2分钟前
yuan完成签到,获得积分10
3分钟前
3分钟前
3分钟前
曦耀发布了新的文献求助10
3分钟前
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
aaa5a123完成签到 ,获得积分10
4分钟前
4分钟前
kuoping完成签到,获得积分0
4分钟前
icoo发布了新的文献求助10
4分钟前
Criminology34举报火乐乐求助涉嫌违规
4分钟前
5分钟前
5分钟前
脑洞疼应助落寞的又菡采纳,获得10
5分钟前
Criminology34举报yu求助涉嫌违规
5分钟前
null应助科研通管家采纳,获得10
5分钟前
null应助科研通管家采纳,获得10
5分钟前
null应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628282
求助须知:如何正确求助?哪些是违规求助? 4716386
关于积分的说明 14963951
捐赠科研通 4785999
什么是DOI,文献DOI怎么找? 2555502
邀请新用户注册赠送积分活动 1516781
关于科研通互助平台的介绍 1477332