Multi-strategy-based adaptive sine cosine algorithm for engineering optimization problems

计算机科学 粒子群优化 三角函数 人口 早熟收敛 算法 最优化问题 数学优化 趋同(经济学) 适应性突变 遗传算法 数学 经济增长 经济 社会学 人口学 几何学
作者
Fengtao Wei,Yangyang Zhang,Junyu Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:248: 123444-123444 被引量:14
标识
DOI:10.1016/j.eswa.2024.123444
摘要

Sine Cosine Algorithm(SCA) is a population-based optimization algorithm, to find the optimal solution. However, SCA has problems such as premature convergence, insufficient solution precision for high-dimensional functions, and slow convergence speed. To solve the problems above, this paper proposes a multi-strategy-based Adaptive Sine Cosine Algorithm (ASCA). Firstly, a more uniform initial population is generated by the Halton sequence so that the initial population covers the entire search space to maintain the diversity of the initial population. Secondly, the adaptive grading strategy is adopted to sort according to the fitness value, and the population dynamics are divided into 4 grades: excellent, good, medium and poor. For the purpose of improving the convergence accuracy of the algorithm and enhancing the ability to jump out of the local optimum, hybrid mutation and elite guidance methods are applied to different levels of populations for perturbing mutations. Finally, in order to improve the convergence speed of the algorithm, a dynamic opposition-based learning global search strategy is proposed. The ASCA is tested on a set of 20 functions in low- dimensional and high-dimensional, and the improved algorithm is compared with Particle Swarm Optimization (PSO), Backtracking Search Algorithm(BSA), Genetic Algorithm(GA)and other improved Sine Cosine Algorithms. The results show the improved convergence accuracy and speed of the ASCA. Moreover, the ASCA proposed in this paper is applied to engineering optimization design. The solution results show that the ASCA is better than other algorithms in superiority-seeking ability, and can effectively solve the optimization problems in engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爆米花应助苏栀采纳,获得10
1秒前
SciGPT应助你好帅的哦采纳,获得10
1秒前
桐桐应助机灵柚子采纳,获得10
2秒前
xzy完成签到,获得积分10
2秒前
2秒前
刻苦觅荷完成签到,获得积分10
2秒前
啦啦啦123发布了新的文献求助10
2秒前
mage发布了新的文献求助10
3秒前
有足量NaCl发布了新的文献求助10
4秒前
sugar发布了新的文献求助10
4秒前
pluvia完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
6秒前
谨慎的宝贝完成签到,获得积分10
7秒前
gyro发布了新的文献求助10
8秒前
8秒前
JamesPei应助zgm断翅蝴蝶采纳,获得20
8秒前
啦啦啦123完成签到,获得积分10
8秒前
xzy发布了新的文献求助10
9秒前
10秒前
gyro完成签到,获得积分10
13秒前
14秒前
15秒前
15秒前
Fox完成签到,获得积分20
16秒前
17秒前
17秒前
忽昨日完成签到,获得积分10
17秒前
54完成签到,获得积分10
18秒前
科研通AI2S应助机灵柚子采纳,获得10
18秒前
H的流年发布了新的文献求助10
19秒前
19秒前
19秒前
1111完成签到,获得积分10
19秒前
脑洞疼应助林夕采纳,获得10
20秒前
20秒前
sugar完成签到,获得积分10
21秒前
21秒前
21秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871122
求助须知:如何正确求助?哪些是违规求助? 3413294
关于积分的说明 10683711
捐赠科研通 3137724
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834633
科研通“疑难数据库(出版商)”最低求助积分说明 781250