RFEM: A framework for essential microRNA identification in mice based on rotation forest and multiple feature fusion

小RNA 分类器(UML) 计算机科学 人工智能 鉴定(生物学) 计算生物学 机器学习 模式识别(心理学) 数据挖掘 生物信息学 生物 基因 遗传学 生态学
作者
Shu-Hao Wang,Yan Zhao,Chun-Chun Wang,Fei Chu,Lianying Miao,Li Zhang,Linlin Zhuo,Xing Chen
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:: 108177-108177 被引量:7
标识
DOI:10.1016/j.compbiomed.2024.108177
摘要

With the increasing number of microRNAs (miRNAs), identifying essential miRNAs has become an important task that needs to be solved urgently. However, there are few computational methods for essential miRNA identification. Here, we proposed a novel framework called Rotation Forest for Essential MicroRNA identification (RFEM) to predict the essentiality of miRNAs in mice. We first constructed 1264 miRNA features of all miRNA samples by fusing 38 miRNA features obtained from the PESM paper and 1226 miRNA functional features calculated based on miRNA-target gene interactions. Then, we employed 182 training samples with 1264 features to train the rotation forest model, which was applied to compute the essentiality scores of the candidate samples. The main innovations of RFEM were as follows: 1) miRNA functional features were introduced to enrich the diversity of miRNA features; 2) the rotation forest model used decision tree as the base classifier and could increase the difference among base classifiers through feature transformation to achieve better ensemble results. Experimental results show that RFEM significantly outperformed two previous models with the AUC (AUPR) of 0.942 (0.944) in three comparison experiments under 5-fold cross validation, which proved the model's reliable performance. Moreover, ablation study was further conducted to demonstrate the effectiveness of the novel miRNA functional features. Additionally, in the case studies of assessing the essentiality of unlabeled miRNAs, experimental literature confirmed that 7 of the top 10 predicted miRNAs have crucial biological functions in mice. Therefore, RFEM would be a reliable tool for identifying essential miRNAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助阿然采纳,获得10
1秒前
蟲先生完成签到 ,获得积分0
5秒前
6秒前
扬xue完成签到,获得积分20
8秒前
唐宝完成签到 ,获得积分10
10秒前
12秒前
jin发布了新的文献求助10
12秒前
扬xue发布了新的文献求助30
13秒前
非要叫我起个昵称完成签到,获得积分10
14秒前
LZY发布了新的文献求助10
15秒前
shunshun51213完成签到,获得积分10
15秒前
zxy完成签到 ,获得积分10
16秒前
李健的小迷弟应助安白采纳,获得10
19秒前
hbb完成签到 ,获得积分10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
back you up应助科研通管家采纳,获得30
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
慕青应助科研通管家采纳,获得10
23秒前
zhu97应助科研通管家采纳,获得20
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
充电宝应助沁阳采纳,获得10
25秒前
LZY完成签到,获得积分10
26秒前
fdwang完成签到 ,获得积分10
28秒前
33秒前
34秒前
37秒前
37秒前
37秒前
归尘发布了新的文献求助10
39秒前
NexusExplorer应助执执采纳,获得10
40秒前
40秒前
失眠的蓝完成签到,获得积分10
41秒前
41秒前
圈圈黄发布了新的文献求助10
42秒前
NexusExplorer应助霸气的梦露采纳,获得10
42秒前
悄悄睡觉完成签到 ,获得积分10
42秒前
wwww发布了新的文献求助10
43秒前
45秒前
HelingXu完成签到 ,获得积分10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778003
求助须知:如何正确求助?哪些是违规求助? 3323635
关于积分的说明 10215195
捐赠科研通 3038839
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339