亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multicenter Study of the Utility of Convolutional Neural Network and Transformer Models for the Detection and Segmentation of Meningiomas

分割 卷积神经网络 人工智能 组内相关 医学 模式识别(心理学) 计算机科学 一致性(知识库) 图像分割 人工神经网络 临床心理学 心理测量学
作者
Xin Ma,Lingxiao Zhao,Shijie Dang,Yajing Zhao,Yiping Lu,Xuanxuan Li,Peng Li,Yibo Chen,Nan Mei,Bo Yin,Daoying Geng
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (3): 480-490
标识
DOI:10.1097/rct.0000000000001565
摘要

Purpose This study aimed to investigate the effectiveness and practicality of using models like convolutional neural network and transformer in detecting and precise segmenting meningioma from magnetic resonance images. Methods The retrospective study on T1-weighted and contrast-enhanced images of 523 meningioma patients from 3 centers between 2010 and 2020. A total of 373 cases split 8:2 for training and validation. Three independent test sets were built based on the remaining 150 cases. Six convolutional neural network detection models trained via transfer learning were evaluated using 4 metrics and receiver operating characteristic analysis. Detected images were used for segmentation. Three segmentation models were trained for meningioma segmentation and were evaluated via 4 metrics. In 3 test sets, intraclass consistency values were used to evaluate the consistency of detection and segmentation models with manually annotated results from 3 different levels of radiologists. Results The average accuracies of the detection model in the 3 test sets were 97.3%, 93.5%, and 96.0%, respectively. The model of segmentation showed mean Dice similarity coefficient values of 0.884, 0.834, and 0.892, respectively. Intraclass consistency values showed that the results of detection and segmentation models were highly consistent with those of intermediate and senior radiologists and lowly consistent with those of junior radiologists. Conclusions The proposed deep learning system exhibits advanced performance comparable with intermediate and senior radiologists in meningioma detection and segmentation. This system could potentially significantly improve the efficiency of the detection and segmentation of meningiomas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
爱玛爱玛发布了新的文献求助10
19秒前
orixero应助单纯菠萝采纳,获得10
23秒前
YY完成签到,获得积分10
26秒前
27秒前
43秒前
Hello应助科研通管家采纳,获得10
59秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
JamesPei应助科研通管家采纳,获得10
59秒前
Criminology34应助科研通管家采纳,获得10
59秒前
过氧化氢发布了新的文献求助10
1分钟前
胡亚楠完成签到,获得积分10
1分钟前
老年学术废物完成签到 ,获得积分10
1分钟前
左鞅完成签到 ,获得积分10
1分钟前
小王发布了新的文献求助30
1分钟前
雍雍完成签到 ,获得积分10
1分钟前
热情的觅云完成签到 ,获得积分10
1分钟前
婼汐完成签到 ,获得积分10
1分钟前
小王完成签到,获得积分10
1分钟前
1分钟前
小包子发布了新的文献求助10
1分钟前
汪鸡毛完成签到 ,获得积分10
2分钟前
2分钟前
努力的淼淼完成签到 ,获得积分10
2分钟前
单纯菠萝发布了新的文献求助10
2分钟前
2分钟前
过氧化氢发布了新的文献求助10
2分钟前
af完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
Jasper应助黑椒墨鱼采纳,获得10
3分钟前
3分钟前
情怀应助yr采纳,获得10
3分钟前
万能图书馆应助HaonanZhang采纳,获得10
3分钟前
3分钟前
单纯菠萝完成签到,获得积分10
3分钟前
星辰大海应助sunnie采纳,获得10
3分钟前
黑椒墨鱼发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422484
求助须知:如何正确求助?哪些是违规求助? 4537384
关于积分的说明 14157362
捐赠科研通 4453965
什么是DOI,文献DOI怎么找? 2443170
邀请新用户注册赠送积分活动 1434473
关于科研通互助平台的介绍 1411582