A Graph Neural Network for Ship Link Prediction Based on Graph Attention Mechanism and Quaternion Embedding

计算机科学 嵌入 链接(几何体) 理论计算机科学 图形 四元数 知识图 图嵌入 人工智能 数学 几何学 计算机网络
作者
Jiaqi Zhou,Wenxian Yu,Jing Zhang,Siyuan Mu,Yan Li
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2023.3336932
摘要

In recent years, research on knowledge graphs has exploded due to their capability of effective organization and representation for massive heterogeneous data. However, existing knowledge graphs are often incomplete and contain incorrect triples, which easily incurs a negative impact on the performance of downstream tasks. Besides, few works have been done on the construction of ship knowledge graph. For the former, the mainstream solution is link prediction, also known as knowledge graph completion. To this end, we propose a novel method of knowledge graph embeddings for link prediction, called QuatGAT, combining graph attention mechanism with quaternion embeddings. Specifically, multi-head attention mechanism is employed firstly to obtain entity embeddings by capturing features of both entities and relations of the neighborhood. Then, to represent relations more sufficiently, we use quaternion embeddings to explicitly represent relations as well as entities. Experimental results on benchmark datasets FB15k and FB15k-237 demonstrate the superiority of QuatGAT over existing state-of-the-art methods. Moreover, in terms of ship knowledge graph construction, we also build a multimodal ship knowledge graph named MSKG. Likewise, experimental results on this dataset verify the effectiveness of QuatGAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘉琳完成签到 ,获得积分10
刚刚
斯文败类应助evelyn采纳,获得10
1秒前
顺利的历发布了新的文献求助10
1秒前
情怀应助小小爱吃百香果采纳,获得10
2秒前
2秒前
2秒前
12关闭了12文献求助
3秒前
一堃发布了新的文献求助10
3秒前
Huang完成签到,获得积分10
3秒前
腼腆的芹菜给腼腆的芹菜的求助进行了留言
3秒前
丘比特应助苏格拉没有底采纳,获得10
4秒前
浮游应助王晓卉采纳,获得10
4秒前
4秒前
科研通AI5应助ZL187377采纳,获得10
4秒前
11112321321完成签到 ,获得积分10
4秒前
醒醒发布了新的文献求助10
5秒前
盒子年糕完成签到,获得积分10
5秒前
5秒前
6秒前
CEJ发布了新的文献求助10
6秒前
7秒前
7秒前
内向妙梦完成签到,获得积分20
7秒前
英俊的铭应助xin采纳,获得10
7秒前
彭于晏应助李慧玉采纳,获得10
7秒前
7秒前
7秒前
orixero应助JAYZHANG采纳,获得10
8秒前
爱学习的小杨完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
幻墨如烟完成签到 ,获得积分10
8秒前
乐乐应助一定发发发采纳,获得10
8秒前
beplayer1完成签到,获得积分10
8秒前
8秒前
孙铭瑞发布了新的文献求助10
9秒前
Romme完成签到,获得积分10
9秒前
哈基米发布了新的文献求助20
9秒前
Nonono发布了新的文献求助10
10秒前
完美世界应助九霄采纳,获得10
11秒前
月落无痕97完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4848232
求助须知:如何正确求助?哪些是违规求助? 4148176
关于积分的说明 12847944
捐赠科研通 3895090
什么是DOI,文献DOI怎么找? 2140991
邀请新用户注册赠送积分活动 1160697
关于科研通互助平台的介绍 1060790