清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TTST: A Top-k Token Selective Transformer for Remote Sensing Image Super-Resolution

安全性令牌 计算机科学 变压器 人工智能 模式识别(心理学) 电压 工程类 计算机网络 电气工程
作者
Yi Xiao,Qiangqiang Yuan,Kui Jiang,Jiang He,Chia‐Wen Lin,Liangpei Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 738-752 被引量:220
标识
DOI:10.1109/tip.2023.3349004
摘要

Transformer-based method has demonstrated promising performance in image super-resolution tasks, due to its long-range and global aggregation capability. However, the existing Transformer brings two critical challenges for applying it in large-area earth observation scenes: (1) redundant token representation due to most irrelevant tokens; (2) single-scale representation which ignores scale correlation modeling of similar ground observation targets. To this end, this paper proposes to adaptively eliminate the interference of irreverent tokens for a more compact self-attention calculation. Specifically, we devise a Residual Token Selective Group (RTSG) to grasp the most crucial token by dynamically selecting the top- k keys in terms of score ranking for each query. For better feature aggregation, a Multi-scale Feed-forward Layer (MFL) is developed to generate an enriched representation of multi-scale feature mixtures during feed-forward process. Moreover, we also proposed a Global Context Attention (GCA) to fully explore the most informative components, thus introducing more inductive bias to the RTSG for an accurate reconstruction. In particular, multiple cascaded RTSGs form our final Top- k Token Selective Transformer (TTST) to achieve progressive representation. Extensive experiments on simulated and real-world remote sensing datasets demonstrate our TTST could perform favorably against state-of-the-art CNN-based and Transformer-based methods, both qualitatively and quantitatively. In brief, TTST outperforms the state-of-the-art approach (HAT-L) in terms of PSNR by 0.14 dB on average, but only accounts for 47.26% and 46.97% of its computational cost and parameters. The code and pre-trained TTST will be available at https://github.com/XY-boy/TTST for validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
22秒前
丘比特应助Luke采纳,获得10
28秒前
彩色的芷容完成签到 ,获得积分10
36秒前
xiaobai123456完成签到,获得积分10
44秒前
简单的冬瓜完成签到,获得积分10
44秒前
酷波er应助Dongjie采纳,获得10
46秒前
56秒前
Luke发布了新的文献求助10
1分钟前
1分钟前
邱佩群完成签到 ,获得积分10
1分钟前
小蘑菇应助Luke采纳,获得10
1分钟前
练得身形似鹤形完成签到 ,获得积分10
1分钟前
1分钟前
卜哥完成签到,获得积分10
1分钟前
guoguo1119完成签到 ,获得积分10
1分钟前
moxiang发布了新的文献求助10
1分钟前
乐正怡完成签到 ,获得积分0
1分钟前
Chelsea完成签到,获得积分10
1分钟前
1分钟前
英姑应助moxiang采纳,获得10
1分钟前
1分钟前
Mia233完成签到 ,获得积分10
1分钟前
Dongjie发布了新的文献求助10
1分钟前
Luke发布了新的文献求助10
1分钟前
喵了个咪完成签到 ,获得积分10
2分钟前
小二郎应助Luke采纳,获得10
2分钟前
chcmy完成签到 ,获得积分0
2分钟前
2分钟前
Luke发布了新的文献求助10
2分钟前
小糊涂完成签到 ,获得积分10
2分钟前
dx完成签到,获得积分10
2分钟前
debu9完成签到,获得积分10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
锅架了完成签到 ,获得积分10
2分钟前
雪酪芋泥球完成签到 ,获得积分10
3分钟前
甜乎贝贝完成签到 ,获得积分0
3分钟前
BINBIN完成签到 ,获得积分10
3分钟前
要减肥的土豆完成签到,获得积分10
4分钟前
4分钟前
lingling完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645003
求助须知:如何正确求助?哪些是违规求助? 4767024
关于积分的说明 15026102
捐赠科研通 4803370
什么是DOI,文献DOI怎么找? 2568275
邀请新用户注册赠送积分活动 1525669
关于科研通互助平台的介绍 1485222