亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TTST: A Top-k Token Selective Transformer for Remote Sensing Image Super-Resolution

安全性令牌 计算机科学 变压器 人工智能 模式识别(心理学) 电压 工程类 计算机网络 电气工程
作者
Yi Xiao,Qiangqiang Yuan,Kui Jiang,Jiang He,Chia‐Wen Lin,Liangpei Zhang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 738-752 被引量:78
标识
DOI:10.1109/tip.2023.3349004
摘要

Transformer-based method has demonstrated promising performance in image super-resolution tasks, due to its long-range and global aggregation capability. However, the existing Transformer brings two critical challenges for applying it in large-area earth observation scenes: (1) redundant token representation due to most irrelevant tokens; (2) single-scale representation which ignores scale correlation modeling of similar ground observation targets. To this end, this paper proposes to adaptively eliminate the interference of irreverent tokens for a more compact self-attention calculation. Specifically, we devise a Residual Token Selective Group (RTSG) to grasp the most crucial token by dynamically selecting the top- $k$ keys in terms of score ranking for each query. For better feature aggregation, a Multi-scale Feed-forward Layer (MFL) is developed to generate an enriched representation of multi-scale feature mixtures during feed-forward process. Moreover, we also proposed a Global Context Attention (GCA) to fully explore the most informative components, thus introducing more inductive bias to the RTSG for an accurate reconstruction. In particular, multiple cascaded RTSGs form our final Top- $k$ Token Selective Transformer (TTST) to achieve progressive representation. Extensive experiments on simulated and real-world remote sensing datasets demonstrate our TTST could perform favorably against state-of-the-art CNN-based and Transformer-based methods, both qualitatively and quantitatively. In brief, TTST outperforms the state-of-the-art approach (HAT-L) in terms of PSNR by 0.14 dB on average, but only accounts for 47.26% and 46.97% of its computational cost and parameters. The code and pre-trained TTST will be available at https://github.com/XY-boy/TTST for validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助wack采纳,获得10
28秒前
Hillson完成签到,获得积分10
28秒前
50秒前
Kate发布了新的文献求助10
53秒前
科研通AI2S应助LIN采纳,获得20
56秒前
科研小狗完成签到 ,获得积分20
1分钟前
西蓝花香菜完成签到 ,获得积分10
1分钟前
2分钟前
y234j788发布了新的文献求助10
2分钟前
月亮完成签到 ,获得积分10
2分钟前
KaK发布了新的文献求助10
2分钟前
2分钟前
KaK完成签到,获得积分10
2分钟前
DrCuiTianjin完成签到 ,获得积分10
2分钟前
Chocolat_Chaud完成签到,获得积分10
2分钟前
杨志坚完成签到 ,获得积分10
2分钟前
3分钟前
鱼鱼鱼完成签到,获得积分10
3分钟前
兜兜揣满糖完成签到 ,获得积分10
3分钟前
c138zyx完成签到,获得积分10
4分钟前
y234j788完成签到,获得积分10
4分钟前
4分钟前
c138zyx发布了新的文献求助10
4分钟前
4分钟前
坦率大米发布了新的文献求助10
4分钟前
z123完成签到,获得积分10
4分钟前
4分钟前
4分钟前
jiaobu发布了新的文献求助10
4分钟前
wack发布了新的文献求助10
4分钟前
我是老大应助坦率大米采纳,获得10
4分钟前
4分钟前
Rebeccaiscute完成签到 ,获得积分10
5分钟前
5分钟前
赘婿应助wack采纳,获得10
5分钟前
6分钟前
hyg发布了新的文献求助10
6分钟前
巽123完成签到,获得积分10
6分钟前
穆妮热完成签到 ,获得积分10
6分钟前
7分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281976
捐赠科研通 3053482
什么是DOI,文献DOI怎么找? 1675647
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468