铁磁性
凝聚态物理
相变
过渡金属
材料科学
相(物质)
量子相变
拓扑序
拓扑(电路)
物理
量子力学
化学
量子
组合数学
催化作用
生物化学
数学
作者
Shilei Ji,Ruijia Yao,Chuye Quan,Yile Wang,Jianping Yang,Xing’ao Li
出处
期刊:Physical review
[American Physical Society]
日期:2023-12-18
卷期号:108 (22)
被引量:8
标识
DOI:10.1103/physrevb.108.224422
摘要
Two-dimensional transition metal dichalcogenides (TMDs) are considered a suitable platform to study topological properties such as the quantum anomalous Hall effect. However, this quantum transport property is usually found in systems with a small band gap. For large-band-gap TMDs, the nature of quantum transport is difficult to find. In this work, with the analysis of the $k\ifmmode\cdot\else\textperiodcentered\fi{}p$ model, we investigate the topological phases of ferromagnetic TMDs in the cases of a large gap and small gap. By analyzing the orbital Berry curvature, we reveal that the orbital Hall effect in the system possesses a nontrivial topological invariant ${C}_{L}=\ensuremath{-}1$ when $\mathrm{sgn}({\mathrm{\ensuremath{\Delta}}}_{+1}{\mathrm{\ensuremath{\Delta}}}_{\ensuremath{-}1})>0$, where ${\mathrm{\ensuremath{\Delta}}}_{\ensuremath{\tau}}$ represents the band gap at the $\ensuremath{\tau}$ valley (K or ${K}^{\ensuremath{'}}$ valley). Consequently, the large-gap ferromagnetic TMDs exhibit properties of an orbital Hall insulator. In the case of $\mathrm{sgn}({\mathrm{\ensuremath{\Delta}}}_{+1}{\mathrm{\ensuremath{\Delta}}}_{\ensuremath{-}1})<0$, we demonstrate that the small-gap system transforms into a quantum anomalous Hall insulator with a Chern number $C=1$. Both topological phases are valley polarized and robust in the presence of an out-of-plane magnetic moment. Subsequently, we illustrate this transition from an orbital Hall insulator to a quantum anomalous Hall insulator in ${\mathrm{FeCl}}_{2}$, a representative ferromagnetic TMD, by tuning the Coulomb correction ${U}_{\mathrm{eff}}$ to manipulate the valley band gaps.
科研通智能强力驱动
Strongly Powered by AbleSci AI