Surface Modification of Silicon Nanowires with Siloxane Molecules for High-Performance Hydrovoltaic Devices

材料科学 硅氧烷 表面改性 纳米线 纳米技术 化学工程 光电子学 复合材料 聚合物 工程类
作者
Guangshang Sheng,Yihao Shi,Bingchang Zhang,Jiahao Qin,Bin-Bin Zhang,Xingshan Jiang,Chenyang Gu,Kai Wu,Cheng Zhang,Jia Yu,Xiaofeng Li,Xiaohong Zhang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (6): 8024-8031 被引量:3
标识
DOI:10.1021/acsami.3c15852
摘要

Hydrovoltaic devices (HDs) based on silicon nanowires (SiNWs) have attracted significant attention due to their potential of high output power and good compatibility with Si-based photovoltaic devices for integrated power systems. However, it remains a major challenge to further improve the output performance of SiNW HDs for practical applications. Here, a new strategy to modify the surface of SiNWs with siloxane molecules is proposed to improve the output performance of the SiNW HDs. After modification, both the open-circuit voltage (Voc) and short-circuit current density (Jsc) of n-type SiNW HDs can be improved by approximately 30%, while the output power density can be greatly increased by over 200%. With siloxane modification, Si–OH groups on the surface of typical SiNWs are replaced by Si–O–Si chemical bonds that have a weaker electron-withdrawing capability. More free electrons in n-type SiNWs are liberated from surface bound states and participate in directed flow induced by water evaporation, thereby improving the output performance of HDs. The improved performance is significant for system integration applications as it reduces the number of required devices. Three siloxane-modified SiNW HDs in series are able to drive a 2 V light-emitting diode (LED), whereas four unmodified devices in series are initially needed for the same task. This work provides a simple yet effective strategy for surface modification to improve the output performance of SiNW HDs. Further research into the effect of different surface modifications on the performance of SiNW HDs will greatly promote their performance enhancement and practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气的咖啡豆完成签到,获得积分10
3秒前
七七发布了新的文献求助10
3秒前
liu完成签到 ,获得积分10
3秒前
AAA111122完成签到,获得积分10
4秒前
5秒前
lemon完成签到,获得积分10
6秒前
7秒前
小敏完成签到,获得积分10
7秒前
科研通AI2S应助不认识采纳,获得10
9秒前
9秒前
10秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
11秒前
英勇的半兰完成签到 ,获得积分10
11秒前
13秒前
英姑应助流体小白采纳,获得10
13秒前
SAXA完成签到,获得积分10
15秒前
田様应助ILJM采纳,获得10
15秒前
芷莯发布了新的文献求助10
15秒前
畅快谷秋完成签到 ,获得积分10
15秒前
15秒前
叮当的猫发布了新的文献求助10
16秒前
勤劳善良的胖蜜蜂完成签到,获得积分10
16秒前
Calmbiao完成签到,获得积分10
17秒前
Loki完成签到,获得积分10
17秒前
搜集达人应助富强民主采纳,获得10
17秒前
wanci应助布吉岛采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
20秒前
孤独尔白应助齐嘉懿采纳,获得10
20秒前
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
斯文败类应助科研通管家采纳,获得10
20秒前
昏睡的蟠桃应助科研通管家采纳,获得200
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
天天快乐应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
传奇3应助科研通管家采纳,获得10
20秒前
20秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798584
求助须知:如何正确求助?哪些是违规求助? 3344255
关于积分的说明 10319312
捐赠科研通 3060833
什么是DOI,文献DOI怎么找? 1679798
邀请新用户注册赠送积分活动 806776
科研通“疑难数据库(出版商)”最低求助积分说明 763372