Knowledge Embedded Autoencoder Network for Harmonic Drive Fault Diagnosis Under Few-Shot Industrial Scenarios

自编码 预言 计算机科学 断层(地质) 领域知识 机器学习 深度学习 人工智能 概化理论 特征学习 数据挖掘 数学 统计 地质学 地震学
作者
Jiaxian Chen,Kairu Wen,Jingyan Xia,Ruyi Huang,Zhuyun Chen,Weihua Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (13): 22915-22925 被引量:25
标识
DOI:10.1109/jiot.2024.3362343
摘要

The development of Internet of Things technology provides abundant data resources for prognostics health management of industrial machinery, and data-driven methods have shown their powerful ability in the field of fault diagnosis. However, these methods have several limitations: 1) Using less labeled data to obtain higher accuracy is a challenging task, which limits the application of diagnostic models in practical applications. 2) Physics-informed knowledge is largely ignored during the modeling process, which contains a wealth of information that can reflect the harmonic drive's health status. To address these challenges, a self-supervised fault diagnosis framework is developed by integrating prior knowledge with deep learning to improve the accuracy and reliability of diagnosis models in industrial applications. Specifically, the physics-based knowledge including 32-dimensional time domain, frequency domain, and time-frequency domain features, is first designed to provide fault information and significantly reduce the amount of data required for deep learning. Furthermore, a self-supervised knowledge embedded auto-encoder network is built by employing the prior knowledge in the multi-scale convolutional auto-encoder. With the ability to integrate prior knowledge and the self-supervised learning mechanism, the proposed method can provide a strong tool for knowledge representation and an effective solution for fault diagnosis under a few-shot industrial scenario. The experimental results conducted on a real harmonic drive fault dataset prove that the proposed network framework provides effective insights on fault diagnosis and has excellent generalizability in practical industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默枫发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
sx发布了新的文献求助10
2秒前
ZJU完成签到,获得积分10
2秒前
2秒前
2秒前
周周发布了新的文献求助30
3秒前
周周发布了新的文献求助30
3秒前
周周发布了新的文献求助30
3秒前
丁一发布了新的文献求助10
3秒前
tudou0210发布了新的文献求助10
3秒前
3秒前
3秒前
浮游应助gfsuen采纳,获得10
3秒前
灵巧夏彤完成签到,获得积分10
4秒前
zgf完成签到 ,获得积分10
4秒前
日落发布了新的文献求助10
4秒前
搜集达人应助lililili采纳,获得10
5秒前
猪猪侠发布了新的文献求助10
5秒前
5秒前
张耘硕发布了新的文献求助10
5秒前
Chnn发布了新的文献求助10
5秒前
wong发布了新的文献求助10
6秒前
俭朴舞仙发布了新的文献求助10
6秒前
传奇3应助zgzz采纳,获得10
6秒前
旺仔不是崽完成签到,获得积分10
6秒前
dd发布了新的文献求助10
7秒前
曾经的真发布了新的文献求助10
7秒前
勤恳万宝路完成签到,获得积分10
7秒前
高大行天发布了新的文献求助10
7秒前
8秒前
笙璃完成签到,获得积分10
8秒前
酷波er应助追寻又柔采纳,获得10
8秒前
Mayer发布了新的文献求助10
8秒前
TEMPO发布了新的文献求助10
8秒前
9秒前
上官若男应助achilles采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261307
求助须知:如何正确求助?哪些是违规求助? 4422429
关于积分的说明 13766330
捐赠科研通 4296949
什么是DOI,文献DOI怎么找? 2357579
邀请新用户注册赠送积分活动 1353993
关于科研通互助平台的介绍 1315165