Evaluation of Large Language Model Performance and Reliability for Citations and References in Scholarly Writing: Cross-Disciplinary Study

计算机科学 可靠性(半导体) 纪律 万维网 数据科学 心理学 社会学 社会科学 功率(物理) 物理 量子力学
作者
Joseph Mugaanyi,Liuying Cai,Sumei Cheng,Caide Lu,Jing Huang
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e52935-e52935 被引量:13
标识
DOI:10.2196/52935
摘要

Background Large language models (LLMs) have gained prominence since the release of ChatGPT in late 2022. Objective The aim of this study was to assess the accuracy of citations and references generated by ChatGPT (GPT-3.5) in two distinct academic domains: the natural sciences and humanities. Methods Two researchers independently prompted ChatGPT to write an introduction section for a manuscript and include citations; they then evaluated the accuracy of the citations and Digital Object Identifiers (DOIs). Results were compared between the two disciplines. Results Ten topics were included, including 5 in the natural sciences and 5 in the humanities. A total of 102 citations were generated, with 55 in the natural sciences and 47 in the humanities. Among these, 40 citations (72.7%) in the natural sciences and 36 citations (76.6%) in the humanities were confirmed to exist (P=.42). There were significant disparities found in DOI presence in the natural sciences (39/55, 70.9%) and the humanities (18/47, 38.3%), along with significant differences in accuracy between the two disciplines (18/55, 32.7% vs 4/47, 8.5%). DOI hallucination was more prevalent in the humanities (42/55, 89.4%). The Levenshtein distance was significantly higher in the humanities than in the natural sciences, reflecting the lower DOI accuracy. Conclusions ChatGPT’s performance in generating citations and references varies across disciplines. Differences in DOI standards and disciplinary nuances contribute to performance variations. Researchers should consider the strengths and limitations of artificial intelligence writing tools with respect to citation accuracy. The use of domain-specific models may enhance accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Siriya完成签到,获得积分10
1秒前
震动的修洁完成签到 ,获得积分10
5秒前
lixia完成签到 ,获得积分10
5秒前
yi完成签到,获得积分10
6秒前
顾矜应助hu采纳,获得10
7秒前
脑洞疼应助清脆的书桃采纳,获得10
9秒前
明明完成签到 ,获得积分10
10秒前
10秒前
充电宝应助123采纳,获得30
11秒前
12秒前
14秒前
大鱼发布了新的文献求助10
15秒前
沚沐发布了新的文献求助10
15秒前
创不可贴完成签到,获得积分10
15秒前
16秒前
16秒前
1117完成签到 ,获得积分10
17秒前
隐形曼青应助woods采纳,获得10
17秒前
kk发布了新的文献求助10
17秒前
19秒前
19秒前
Bear完成签到 ,获得积分10
19秒前
cream完成签到 ,获得积分10
20秒前
科研通AI2S应助巴西琉斯采纳,获得10
20秒前
kuku完成签到,获得积分10
20秒前
cc应助酷酷梨愁采纳,获得50
21秒前
深情安青应助jiujiuhuang采纳,获得30
22秒前
hu发布了新的文献求助10
22秒前
23秒前
海阔云高完成签到 ,获得积分10
24秒前
24秒前
离魂发布了新的文献求助10
24秒前
demon发布了新的文献求助10
25秒前
26秒前
26秒前
guugen发布了新的文献求助10
27秒前
woods发布了新的文献求助10
29秒前
阳光的静白完成签到,获得积分10
30秒前
31秒前
离魂完成签到,获得积分10
32秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3904989
求助须知:如何正确求助?哪些是违规求助? 3449900
关于积分的说明 10859777
捐赠科研通 3175255
什么是DOI,文献DOI怎么找? 1754203
邀请新用户注册赠送积分活动 848221
科研通“疑难数据库(出版商)”最低求助积分说明 790807